【网络篇】第一篇——网络入门基础(三)

简介: 【网络篇】第一篇——网络入门基础

什么是报头?

报头本质也是一种数据,报头一般是通过位段实现的,因此协议栈的每一层都有一个对应的位段来表示当前层的报头。

数据的封装与解包:

  • 数据封装,实际就是不断给数据加上各种对应的报头,这些报头里面填充的就是对应的各种协议细节。
  • 数据解包,实际就是不断从数据中提取对应的报头,并对提取出来的报头进行数据分析

报头与有效载荷

当对端主机收到数据后,需要自底向上贯穿协议栈,依次进行数据的解包与分用。在这个解包的过程中,每一层的协议只需要提取出数据中对应的报头,然后对该报头进行分析处理,而剩下的数据则直接交付给上层就行了。


因为每一层的协议实际上只关心数据中与当前层对应的报头信息,而剩下信息的具体内容根本不必关心,我们将数据中除当前层的报头以外的数据叫做“有效载荷”。


需要注意的是,上层协议在数据封装时添加的报头信息,在下层协议进行数据解包时看来就是有效载荷。比如数据封装时应用层添加的报头信息,在对端主机进行数据解包时,在对端主机的传输层、网络层以及链路层看来,该应用层曾经添加的报头信息就是有效载荷。

如何将报头与有效载荷进行分离?

协议栈的每一层都要从数据中提取对应的报头信息,而要将数据中的报头提取出来,首先就需要明确报头与有效载荷之间的界限,这样才能将它们进行分离。而每一层添加报头时都是将报头添加到数据的首部的,因此我们只要知道了报头的大小,就能够讲报头和有效载荷进行分离。

获取报头大小的方法通常有两种

  • 定长报头。顾名思义就是报头的大小是固定的。自描述字段。报头当中提供了一个字段,用来表示报头的长度。

实际上每个协议都要提供一种方法,让我们获取到报头的大小,这样我们才能在解包时将报头与有效载荷进行分离。

当前层如何知道应该将有效载荷交付给上层的哪个协议?

网络协议栈的每一层都可能会对应多种协议,即便将报头与有效载荷分离了,那当前层应该将有效载荷交付给上层对应的哪个协议呢?

实际在每种协议的报头当中,几乎都会包含一个字段,表明我们应该把分离出来的有效载荷交付给上层的哪个协议,这就是分用的过程。

局域网传输数据时,该局域网内的所有主机都能收到

在一个局域网当中,除了当前正在进行通信的A主机和B主机以外,还有其他的主机,那A主机是如何将数据成功发送给B主机的呢?


实际当主机A想要发数据给主机B的时候,该局域网内的其他主机也都收到了该数据,只不过除了主机B以外,其他主机识别到该数据并不是发给自己的,此时其他主机就把收到的数据丢弃了。


也就是说,在局域网(以太网)通信时,该局域网内所有的主机在底层其实都收到了任何数据,只不过经过筛选后只提交上来了发给自己的数据。

什么是碰撞?

当主机A在向主机B发送数据时,其他主机彼此之间可能也正在进行通信,甚至主机A在和主机B通信的同时也在和其他主机进行通信。

但同一局域网中的所有主机在通信时,使用的都是一个共同的通信信道,因此如果局域网内的多台主机同时进行通信,此时这些数据之间就可能会相互干扰。

每一个局域网都可以看作是一个碰撞域,如果某个主机发送出去的数据与其他主机发送的数据之间产生了干扰,我们就称这两台主机在该碰撞域中发生了碰撞。

如何判断发送出去的数据是否发生了碰撞?

因为发送到局域网当中的数据是所有主机都能够收到的,因此当一个主机将数据发送出去后,该主机本身也是能够收到这个数据的。当该主机收到该数据后就可以将其与之前发送出去的数据进行对比,如果发现收到的数据与之前发送出去的数据不相同,则说明在发送过程中发生了碰撞。

也就是说,主机实际是能够通过某种方式,知道曾经发送出去的数据是否发生了碰撞的。

发生碰撞后是如何处理的?

当一个主机发现自己发送出去的数据产生了碰撞,此时该主机就要执行“碰撞避免”算法。“碰撞避免”算法实际很简单:当一个主机发送出去的数据产生了碰撞,那么该主机可以选择等一段时间后,再重新发送该数据。这就像现实生活中的两个人同时想要说话,此时对方就都会说“你先说吧”,这实际上就是一种碰撞避免。

需要注意的是,实际在网络通信压力不大的时候发生碰撞的概率是不大的,我们不要太小瞧计算机的处理速度,也不要太小瞧网线传播数据的速度。

每个主机如何判断该数据是否是发送给自己的?

在局域网中发送的数据实际叫做MAC数据帧,在这个MAC数据帧的报头当中会包含两个字段,分别叫做源MAC地址和目的MAC地址。


每一台计算机都至少配有一张网卡,而每一张网卡在出厂时就已经内置了一个48位的序列号,我们将这个序列号称之为“MAC地址”,这个MAC地址是全球唯一的。


在局域网中进行通信的时候,每一个主机在收到一个MAC数据帧后,都会提取该MAC数据帧的报头,找到对应的目的MAC地址与自己的MAC地址进行比对。如果该MAC地址与自己的MAC地址不匹配,则直接将该MAC数据帧丢弃,只有MAC地址匹配时,该主机才会将该数据帧的有效载荷继续向上进行交付处理。

与碰撞相关的一种局域网攻击机制

如果局域网内的某台主机一直向该局域网内发送一些无用的数据,那么其他主机一发数据就会产生碰撞,此时该局域网也就瘫痪了,这实际就是局域网本身的一个攻击原理。但需要注意的是,这台一直发送“垃圾数据”的主机,必须要通过某种方式绕过“碰撞避免”算法,否则当其发送的数据产生碰撞后,该主机自己也会执行“碰撞避免”算法。

跨网络的两台主机通信


跨网络的两台主机通信

上面说的都是同一局域网内的主机之间的通信,那跨局域网的两台主机之间是如何进行通信的呢?

局域网之间都是通过路由器连接起来的,因此一个路由器至少能够横跨两个局域网。而这些被路由器级联局域网都认为,该路由器就是本局域网内的一台主机,因此路由器可以和这些局域网内的任意一台主机进行直接通信。


比如局域网1当中的主机A想要和局域网2当中的主机H进行通信,那么主机A可以先将数据发送给路由器,然后路由器再将数据转发给局域网2当中的主机H。

image.png

由于以太网和令牌环网是不同的通信标准,它们给数据添加的报头也是不一样的,因此令牌环网当中的主机无法对以太网当中的数据帧进行解包。

这种情况实际是由路由器来处理的,路由器是工作在网络层的一个设备,我们可以认为路由器当中的协议栈是下面这样的。

image.png

此时当数据要从局域网1发送到局域网2时,路由器收到局域网1的数据后,会先将以太网对应的报头进行解包,然后将剩下的数据向上交付给网络层,在网络层进行一系列数据分析后,再将数据向下交付给链路层,此时在链路层当中就会给该数据添加上令牌环对应的报头信息,然后再将该数据发送到局域网2当中,此时该数据就能够在令牌环网当中传输了。

image.png

路由器为什么能够“认路”?

一个路由器可能会级联多个局域网,当路由器需要将一个局域网的数据转发到另一个局域网时,路由器如何知道该数据应该转发到哪一个局域网的呢?

路由器其实是通过IP地址来确定数据的转发方向的,因特网上的每台计算机都有一个唯一的IP地址,而在数据向下进行封装时,在网络层封装的报头当中就会包含两个字段,分别是源IP地址和目的IP地址。


当路由器需要将一个局域网的数据转发到另一个局域网时,在路由器的链路层会先将数据的在当前局域网对应的底层报头去掉,然后将剩下的数据向上交付给网络层,此时在网络层就可以获取到该数据对应的目的IP地址,然后路由器就可以根据该IP地址在路由表当中进行查找,最终就能够确认该数据应该发送到哪一个局域网。

屏蔽底层的差异

IP地址的存在除了帮助数据”路由"以外,还有一个很重要的作用,那就是屏蔽了底层网络的差异。对于通信主机双方的IP层及其往上的协议来说,它们并不需要关心底层采用的是以太网还是令牌环网,它们认为只要填写了源IP地址和目的IP地址就能够将数据发送出去,因此现在主流的网络也叫做“IP网络”。

这种类似的技术还有:

虚拟地址空间:屏蔽了内存之间的差别,让所有的进程看到的都是同一块内存,并且这块内存的布局都是一样的。

网络中的地址管理


认识IP地址


  • IP地址:IPV4、IPV6,uint32_t类型,总共不到43亿个IP地址,用于在网络中唯一标识一台主机。
  • IP地址的组成:网络号 + 主机号
  • 网络号:是一个网络的标识,俗称网段
  • 一个网络中所分配的IP地址都会带有这个网络的标识,这样可以保证每个网络的网络号不同,即可以保证它们分配的IP地址不同
  • 主机号:是一个主机在一个网络中的标识
    一个网络中有很多主机,主机号就是用于在一个网络中标识不同的主机

网段的早期划分

image.png

A:用于组建大型网络,高1位固定为0,7位网络号,24位主机号。网络号范围:0-127。IP地址范围:0.0.0.0-127.255.255.255。

B:用于组建中型网络,高2位固定为10,14位网络号,16位主机号。网络号范围:128.0 ~ 191.255。IP地址范围:128.0.0.0 ~ 191.255.255.255。如:128.1.0.0 ~ 128.1.255.255,这就是128.1这个网段所能分配的IP地址范围,这种网络可以容纳65536个主机。

C:用于组建小型网络,高3位固定为110,21位网络号,8位主机号。网络号范围:192.0.0 ~ 223.255.255。IP地址范围:192.0.0.0 ~ 223.255.255.255。如:192.168.1.0 ~ 192.168.1.255,这就是192.168.1这个网段所能分配的IP地址范围,这种网络可以容纳256个主机。

早期的这种划分方式造成了大量的IP地址浪费(大部分企业申请的都是B类网络),划分网络不够精细。

网络的现在划分

CIDR方案:使用子网掩码划分网络

子网掩码:uint32_t类型,由连续的二进制1组成

子网掩码和IP地址相与:可以得到当前网络的网络号

子网掩码取反:可以得到当前网络中的主机号范围。如子网掩码是255.255.255.0,则这个网络中的主机号范围:0 ~ 255

公网与私网

公网:我们经常所说的互联网

私网:一个私有的网络,仅限于内部通信

IP地址不够用:

  • DHCP动态地址分配
  • NAT网络地址转换(主要就是用于组建私网,私网中的主机要么只能内部通信,要么就使用统一一个对外的IP地址上网)

认识MAC地址


  • MAC地址用来识别数据链路层中相连的节点。
  • 长度为48位,及6个字节,一般用16进制数字加上冒号的形式来表示(例如:08:00:27:03:fb:19)
  • 在网卡出厂时就确定了,不能修改。MAC地址通常是唯一的(虚拟机中的MAC地址不是真实的MAC地址,可能会冲突,也有些网卡支持用户配置MAC地址)。

详细介绍,请看以下博客:

(62条消息) 对于MAC地址的认识,以及MAC地址和IP地址的区别,MAC地址和IP地址各起到什么作用?_马小超i的博客-CSDN博客_知道对方mac地址可以干嘛

相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
4月前
|
监控 安全 数据安全/隐私保护
智能家居安全入门:保护你的网络家园
本文旨在为初学者提供一份简明扼要的指南,介绍如何保护自己的智能家居设备免受网络攻击。通过分析智能家居系统常见的安全漏洞,并提供实用的防御策略,帮助读者建立起一道坚固的数字防线。
|
12天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
48 8
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
86 3
图卷积网络入门:数学基础与架构设计
|
24天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
74 2
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
74 3
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
消息中间件 编解码 网络协议
Netty从入门到精通:高性能网络编程的进阶之路
【11月更文挑战第17天】Netty是一个基于Java NIO(Non-blocking I/O)的高性能、异步事件驱动的网络应用框架。使用Netty,开发者可以快速、高效地开发可扩展的网络服务器和客户端程序。本文将带您从Netty的背景、业务场景、功能点、解决问题的关键、底层原理实现,到编写一个详细的Java示例,全面了解Netty,帮助您从入门到精通。
182 0
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
185 1

热门文章

最新文章