机器学习中的数学原理——感知机模型

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 机器学习中的数学原理——感知机模型

一、什么是感知机

感知机是二分类的线性分类模型输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机目的在求一个可以将实例分开的超平面,为了求它,我们用到基于误分类的损失函数和梯度下降的优化策略。

二、模型分析

之前的学习中,我们学习了权重向量的概念,明白了只要找到权重向量,就能够找到那条分割线,所有现在的问题来到了,我们应该怎么样找到权重向量呢?基本做法和回归时相同:将权重向量用作参数,创建更新表达式来更新参数。接下来,我要说明的就是被称为感知机(perceptron) 的模型。 感知机是非常简单的模型,基本不会应用在实际的问题中。 但它是神经网络和深度学习的基础模型,所以记住它没坏处。

感知机是接受多个输入后将每个值与各自的权重相乘,最后输出总和的模型。人们常用这样的图来表示它:

和我们之前说到的向量的内积很相似,这次我们从图像的角度去理解。在介绍参数更新表达式之前,我们最好做一些准备工作,我们可以先理解这一部分,磨刀不误砍柴工。

2.1训练数据的准备

我们依然以图像的横纵分类为探索问题,设表示宽的轴为 x1、表示高的轴为 x2,用 y 来 表示图像是横向还是纵向的,横向的值为 1、纵向的值为 −1。我们将其画在表里:

接下来,根据参数向量 x 来判断图像是横向还是纵向的函 数,即返回 1 或者 −1 的函数 fw(x)的定义如下。这个函数被称为判别函数。

也就是说,这是根据内积的符号来给出不同返回值的函数,这样就可以判断图像是横向还是纵向的。如果不理解也没有关系,我们对上面这句话再深入理解一下:

与权重向量 w 的内积为负的向量 x 是 什么样的向量呢?用图形来解释更容易理解,所以我们利用这个 包含 cos 的表达式来思考。

之前我们说过|w| 和 |x| 必定为正数,所以决定内积符号的是 cos θ ,我们回忆一下cos θ 的图,它什么时候为 负呢?

在 90◦ < θ < 270◦ 的时候 cos θ 为负,与权重向量 w 之间的夹角为 θ,在 90◦ < θ < 270◦ 范围内的所有 向量都符合条件,所以就在这条直线下面、与权重向量方向相反的这个区域

同理,我们也可以得到使内积为正的向量

所以可以根据内积的正负来分割内积是衡量向量之间相似程度的指标。结果为正,说明二者相似; 为 0 则二者垂直;为负则说明二者不相似。

2.2权重向量的更新表达式

在这个基础上,我们可以这样定义权重向量的更新表达式。

i 在介绍回归的时候也出现过,它指的是训练数据的索引,而不是i 次方的意思,这一点一定要注意。用这个表达式重复处理所有训练数据,更新权重向量。

虽然表达式整体看上去 乱七八糟的,但是一部分一部分分解来看就不那么难了。好好地 想清楚各部分的含义,再慢慢理解整体含义就好了。之前我们也是这么做的

我们先从表达式括号中的 fw(x(i) ) ̸= y(i)开始看,意思是通过判别函数对宽和高的向量 x 进行分类的结果与实际的标签 y不同,也就是说,判别函数的分类结果不正确。那么另外一个 fw(x(i) ) = y(i)就是分类正确。这也就是说,刚才的更新表达式只有在判别函数分类失败的时候 才会更新参数值。

现在着重看一下w := w + y(i) x(i)这个表达式的含义,我们可以结合图形来理解,一边把学习过程实际地画在 图上,一边去考虑它的含义可能就容易理解了。首先在图上随意 画一个权重向量和直线

权重向量是通过随机值来初始化的,上面向量就可以是初始向量。 在这个状态下,假设第一个训练数据是 x(1) = (125, 30),首先我们就用它来更新参数。

现在权重向量 w 和训练数据的向量 x(1) 二者的方向几乎相 反,w 和 x(1) 之间的夹角 θ 的范围是 90◦ < θ < 270◦ ,内积为负。 也就是说,判别函数 fw(x(1) ) 的分类结果为 −1。我们在这里应用刚才的更新表达式。现在 y(1) = 1,所以更新表 达式是这样的,其实就是向量的加法

这个 w + x(1) 就是下一个新的 w,画一条与新的权重向量 垂直的直线,相当于把原来的线旋转了一下,刚才x(1) 与权重向量分居直线两侧,现在它们在同一侧了

这次 θ < 90◦,所以内积为正,判别函数 fw(x) 的分类结果为1。而且x(1) 的标签也为 1,说明分类成功了。这样就可以更新参数的权重向量,刚才处理的是标签值 y = 1 的情况,而对于 y = −1 的情况,只是 更新表达式的向量加法变成了减法而已,做的事情是一样的。

也就是说,虽然有加法和减法的区别,但它们的做法都是在分类失败时更新权重向量,使得直线旋转相应的角度,这就是感知机的学习方法。


相关文章
|
12天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的五大技巧
【4月更文挑战第7天】 在数据科学迅猛发展的今天,机器学习已成为解决复杂问题的重要工具。然而,构建一个既精确又高效的机器学习模型并非易事。本文将分享五种提升机器学习模型性能的有效技巧,包括数据预处理、特征工程、模型选择、超参数调优以及交叉验证。这些方法不仅能帮助初学者快速提高模型准确度,也为经验丰富的数据科学家提供了进一步提升模型性能的思路。
|
16天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的最佳实践
【4月更文挑战第3天】在数据驱动的时代,构建高效的机器学习模型已成为解决复杂问题的关键。本文将探讨一系列实用的技术策略,旨在提高模型的性能和泛化能力。我们将从数据预处理、特征工程、模型选择、超参数调优到集成学习等方面进行详细讨论,并通过实例分析展示如何在实践中应用这些策略。
15 1
|
8天前
|
机器学习/深度学习 自然语言处理 算法
|
1天前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
25 7
|
3天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第16天】 在数据驱动的时代,机器学习已成为解决复杂问题的关键工具。本文旨在分享一套实用的技术流程,帮助读者构建高效的机器学习模型。我们将重点讨论特征工程的重要性、选择合适算法的策略,以及通过交叉验证和网格搜索进行模型调优的方法。文章的目标是为初学者提供一个清晰的指南,同时为有经验的实践者提供一些高级技巧。
|
14天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第5天】 在机器学习领域,构建一个高效的模型并非易事。它涉及多个阶段,包括数据预处理、特征工程、模型选择、训练以及最终的评估和优化。本文深入探讨了如何通过精确的数据预处理技巧和细致的特征工程来提升模型性能,同时介绍了几种常见的模型优化策略。我们的目标是为读者提供一套实用的指导方案,帮助他们在面对复杂数据集时能够有效地构建和调整机器学习模型。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第4天】在数据驱动的时代,构建一个高效的机器学习模型是解决复杂问题的关键。本文将深入探讨特征工程的重要性,并分享如何通过自动化技术进行特征选择与构造。接着,我们将讨论不同的机器学习算法及其适用场景,并提供模型训练、验证和测试的最佳实践。最后,文章将展示如何使用网格搜索和交叉验证来微调模型参数,以达到最优性能。读者将获得一套完整的指南,用以提升机器学习项目的预测准确率和泛化能力。
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型落地实战指南:从选择到训练,深度解析显卡选型、模型训练技、模型选择巧及AI未来展望---打造AI应用新篇章
大模型落地实战指南:从选择到训练,深度解析显卡选型、模型训练技、模型选择巧及AI未来展望---打造AI应用新篇章
大模型落地实战指南:从选择到训练,深度解析显卡选型、模型训练技、模型选择巧及AI未来展望---打造AI应用新篇章
|
24天前
|
机器学习/深度学习 分布式计算 监控
大模型开发:你如何使用大数据进行模型训练?
在大数据模型训练中,关键步骤包括数据准备(收集、清洗、特征工程、划分),硬件准备(分布式计算、并行训练),模型选择与配置,训练与优化,监控评估,以及模型的持久化与部署。过程中要关注数据隐私、安全及法规遵循,利用技术进步提升效率和性能。
32 2
|
25天前
|
机器学习/深度学习 SQL 人工智能
机器学习PAI常见问题之训练模型报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

相关产品

  • 人工智能平台 PAI