机器学习中的数学原理——多重回归算法

简介: 机器学习中的数学原理——多重回归算法

一、什么是多重回归

多重线性回归 (multiple linear regression) 是简单直线回归的推广,研究一个因变量与多个自变量之间的数量依存关系。多重线性回归用回归方程描述一个因变量与多个自变量的依存关系,简称 多重回归

二、案例分析

还记得我们之前研究最小二乘法的时候,是根据广告费来预测点击量的,广告费作为唯一变量。无论我们之后研究的梯度下降法还是多项式回归,都是建立在广告费作为唯一变量的前提下的。然而,实际情况中点击量是受到广告费在内的多个因素影响的。也就是说,以点击量作为因变量自变量会有多个。我们将原来的案例扩展一下,现在,决定点击量的除了广告费之外,还有广告的 展示位置和广告版面的大小等多个要素。设 广告费为 x1、广告栏的宽为 x2、广告栏的高为 x3,那么 fθ 可以 表示如下:

现在的问题就变成了怎么去求,按照我们之前的做法,只需要分别求出目标函数对偏微分,然后更新参数就可以了。但是在求偏微分之前,我们可以先试着简化表达式的写法。

想象一下,刚才我们说有 x1、x2、x3 共 3 个变量,下面我们把它推广到有 n个变量的情况。这时候 fθ 会变成什么样子呢?

每次都像这样写 n 个 x 岂不是很麻烦?所以我们现在还可以把参数 θ 和变量 x 看作向量

这里的1就相当于,这样的操作好处就在于保证了θ和 x 的维度相同,处理起来会容易很多。把 θ 转置之后,就可以计算一下它与 x 相乘的结果。

所以简化之后的表达式就变为:

接下来我们就使用 fθ(x)来求参数更新表达式吧,方法与之前一样。设 u = E(θ)、v = fθ(x)的部分是一样的。为了一般化,我们可以 考虑对第 j 个元素 θj 偏微分的表达式:

然后只需要求 v 对 θj 的微分就好了:

那么就可以得到第 j 个参数的更新表达式就是这样的:

这样我们就不用每个 θ 都写更新表达式,它们可以汇总为上面这样的一个表达式。像这样包含了多个变量的回归称为多重回归。可以基于一般化的思路来思考问题正是数学的优点。

三、总结

这一节主要学习了多重回归算法,有原来的一个自变量转化成了多个自变量,考虑多个自变量因变量的影响,从而确定最优参数。同时,我们还学习了简化表达式,将原来繁琐的多个表达式整理成一个通用的表达式,用到了向量的知识,注意和x相乘的时候需要进行转置,这一块在线性代数上面有提及。


相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。
|
7月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
270 7
|
5月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
6月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
243 6
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
8月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
378 3
|
8月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
151 0
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
467 14
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章