【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(Seata-终)

简介: 【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(Seata-终)

分布式事务中间件对⽐与选择


  • tx-lcn
  • EasyTransaction
  • ByteTCC
  • Seata




Seata实现分布式事务


我们主要以Seata的分布式事务框架进行介绍分析,相关的并且针对于其三种模式进行分别说明介绍。



搭建Seata Server


前往github.com/seata/seata… 下载Seata安装包,本书使⽤Seata 1.0.0。将⽬录切换⾄Seata根⽬录,根据操作系统,执⾏对应命令,即可启动Seata Server。



Linux/Unix/Mac

sh ./bin/seata-server.sh
复制代码


Windows

bin\seata-server.bat
复制代码


启动时,也可指定参数

$ sh ./bin/seata-server.sh -p 8091 -h 127.0.0.1 -m file
复制代码


⽀持的参数如下表所示

image.png

Seata AT模式


  • ⼀阶段业务数据和回滚⽇志记录在同⼀个本地事务中提交,释放本地锁和连接资源。
  • ⼆阶段提交异步化,⾮常快速地完成。回滚通过⼀阶段的回滚⽇志进⾏反向补偿。



官⽅⽂档

seata.io/zh-cn/docs/…



代码演示


Maven依赖
<dependency>
   <groupId>com.alibaba.cloud</groupId>
   <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
</dependency>
复制代码


配置
seata:
   tx-service-group: content-center-seata-service-group
   service:
    vgroup-mapping:
        content-center-seata-service-group: seata-cluster
        grouplist:
           seata-cluster: 127.0.0.1:8091
           disable-global-transaction: false
复制代码



配置说明


  • tx-service-group:事务分组,默认是 ${spring.application.name}-seata-service-group ,唯⼀即可。


  • vgroup-mapping:事务分组映射,表示 tx-service-group 对应到哪个Seata Server集群。
  • key是tx-service-group的值,value是集群名称,唯⼀即可


  • grouplist:集群中所包含的Seata Server的地址列表,key是vgroup-mapping中value的值,
  • value是Seata Server的地址列表


  • disable-global-transaction:是否开启全局事务开关,默认false。


在Seata1.0.0中,该配置⽆法正常读取,这是⼀个Bug,详⻅ github.com/seata/seata… ,好在,该配置的默认值就是false,所以不影响使⽤。




创建Seata事务记录表
-- auto-generated definition
create table undo_log (
id bigint auto_increment comment 'increment id' primary key,
branch_id bigint not null comment 'branch transaction id',
xid varchar(100) not null comment 'global transaction id',
context varchar(128) not null comment 'undo_log context,such as serialization',
rollback_info longblob not null comment 'rollback info',
log_status int not null comment '0:normal status,1:defense status',
log_created datetime not null comment 'create datetime',
log_modified datetime not null comment 'modify datetime',
constraint ux_undo_log
unique (xid, branch_id)
) comment 'AT transaction mode undo table' charset = utf8;
复制代码


Controller代码:
private final ShareSeataService shareSeataService;
@PutMapping("/audit/seata1/{id}")
public Share auditByIdSeata1(@PathVariable Integer id, @RequestBody ShareAuditDTO auditDTO) {
     return this.shareSeataService.auditById(id, auditDTO);
}
复制代码


Service代码:


  • 审核中心服务代码(含调用用户中心代码接口)
@Slf4j
@Service
@RequiredArgsConstructor(onConstructor = @__(@Autowired))
public class ShareSeataService {
    private final ShareMapper shareMapper;
    private final UserCenterFeignClient userCenterFeignClient;
   @GlobalTransactional(rollbackFor = Exception.class)
    public Share auditById(Integer id, ShareAuditDTO auditDTO) {
        if (AuditStatusEnum.PASS.equals(auditDTO.getAuditStatusEnum())) { 
            userCenterFeignClient.addBonus(id, 50);
           // 故意抛异常,如果⽤户中⼼侧也能回滚,说明实现了分布式事务
          // throw new IllegalArgumentException("发⽣异常...");
        }
        this.auditByIdInDB(id, auditDTO);
        return this.shareMapper.selectByPrimaryKey(id);
   }
复制代码
  • 审核中心服务代码(执行操作更新数据库机制)
public void auditByIdInDB(Integer id, ShareAuditDTO auditDTO) {
        Share share = Share.builder().id(id).auditStatus(auditDTO.getAuditStatusEnum().toString()).reason(auditDTO.getReason())
       .build();
        this.shareMapper.updateByPrimaryKeySelective(share);
    }
复制代码

@GlobalTransactional 注解⽤来创建分布式事务。




被调⽤⽅代码


Maven依赖
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
</dependency>
复制代码
配置
seata:
    tx-service-group: user-center-seata-service-group
      service:
      vgroup-mapping:
         user-center-seata-service-group: seata-cluster
         grouplist:
            seata-cluster: 127.0.0.1:8091
            disable-global-transaction: false
复制代码



可以看出来,差距主要体现在tx-service-group的值。

Controller代码:
@GetMapping("/add-bonus/{id}/{bonus}")
public User addBonus(@PathVariable Integer id, @PathVariable Integer bonus) {
    this.userService.addBonus(id, bonus);
    return this.userService.findById(id);
}
复制代码



Service代码:
@Slf4j
@Service
@RequiredArgsConstructor(onConstructor = @__(@Autowired))
public class UserService {
    private final UserMapper userMapper;
    private final BonusEventLogMapper bonusEventLogMapper;
    public User findById(Integer id) {
    // select * from user where id = #{id}
        return this.userMapper.selectByPrimaryKey(id);
    }
public void addBonus(Integer userId, Integer bonus) {
    // 1. 为⽤户加积分
    User user = this.userMapper.selectByPrimaryKey(userId);
    user.setBonus(user.getBonus() + bonus);
    this.userMapper.updateByPrimaryKeySelective(user);
    // 2. 记录⽇志到bonus_event_log表⾥⾯
    this.bonusEventLogMapper.insert(BonusEventLog.builder().userId(userId).value(bonus).event("CONTRIBUTE").createTime(new Date()).description("投稿加积分..").build());
    log.info("积分添加完毕...");
 }
}
复制代码



Seata TCC模式


  • ⼀阶段 prepare ⾏为
  • ⼆阶段 commit 或 rollback ⾏为



需要实现的3个⽅法:


  • ⼀阶段:
  • ⽤于业务预处理的⽅法,即 Try 阶段、的⽅法,⽐如冻结⽤户的部分余额等等;
  • ⼆阶段:
  • ⽤于提交业务的⽅法,即 Commit ⽅法,⽐如扣除⽤户之前冻结的部分余额;
  • ⽤于回滚业务的⽅法,即 Rollback ⽅法,⽐如返还之前冻结的⽤户余额;



官⽅⽂档

seata.io/zh-cn/docs/…



代码演示


行为操作接口
@LocalTCC
public interface TccActionOne {
   @TwoPhaseBusinessAction(name = "TccActionOne", commitMethod = "commit", rollbackMethod = "rollback")
    boolean prepare(BusinessActionContext actionContext, int a);
    boolean commit(BusinessActionContext actionContext);
    boolean rollback(BusinessActionContext actionContext);
}
复制代码
接口实现类


  • 实现类1
@Component
public class TccActionOneImpl implements TccActionOne {
    @Override
    public boolean prepare(BusinessActionContext actionContext, int a) {
        // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
        String xid = actionContext.getXid();
        System.out.println("TccActionOne prepare, xid:" + xid);
        return true;
    }
    @Override
    public boolean commit(BusinessActionContext actionContext) {
        // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
        String xid = actionContext.getXid();
        System.out.println("TccActionOne commit, xid:" + xid);
        ResultHolder.setActionOneResult(xid, "T");
        return true;
    }
    @Override
    public boolean rollback(BusinessActionContext actionContext) {
        // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
        String xid = actionContext.getXid();
        System.out.println("TccActionOne rollback, xid:" + xid);
        ResultHolder.setActionOneResult(xid, "R");
        return true;
    }
}
复制代码
@LocalTCC
public interface TccActionTwo {
    @TwoPhaseBusinessAction(name = "TccActionTwo", commitMethod = "commit", rollbackMethod = "rollback")
    boolean prepare(BusinessActionContext actionContext, int a);
    boolean commit(BusinessActionContext actionContext);
    boolean rollback(BusinessActionContext actionContext);
}
复制代码
  • 实现类2
@Component
public class TccActionTwoImpl implements TccActionTwo {
       @Override
       public boolean prepare(BusinessActionContext actionContext, String b) {
              // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
              String xid = actionContext.getXid();
              System.out.println("TccActionTwo prepare, xid:" + xid);
              return true;
       }
       @Override
       public boolean commit(BusinessActionContext actionContext) {
              // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
              String xid = actionContext.getXid();
              System.out.println("TccActionTwo commit, xid:" + xid);
              ResultHolder.setActionTwoResult(xid, "T");
              return true;
       }
       @Override
       public boolean rollback(BusinessActionContext actionContext) {
              // 这⾥是本地玩的,也可以调⽤其他微服务的接⼝
              String xid = actionContext.getXid();
              System.out.println("TccActionTwo rollback, xid:" + xid);
              ResultHolder.setActionTwoResult(xid, "R");
              return true;
       }
}
复制代码



  • 聚合实现服务业务实现类执行
@Service
public class ShareSeataService{
    @Autowired
    TccActionOne tccActionOne;
    @Autowired
    TccActionTwo tccActionTwo;
    @GlobalTransactional
    public void tccTransactionCommit(Map<String, String> paramMap) {
        //第一个TCC 事务参与者
        boolean result = tccActionOne.prepare(null, "one");
        if (!result) {
      paramMap.put("xid",RootContext.getXID());
            throw new RuntimeException("TccActionOne failed.");
        }
        List list = new ArrayList();
        list.add("c1");
        list.add("c2");
        result = tccActionTwo.prepare(null, "two");
        if (!result) {
            paramMap.put("xid",RootContext.getXID());
            throw new RuntimeException("TccActionTwo failed.");
        }
       paramMap.put("xid",RootContext.getXID());
        return ;
    }
}
// 回滚的代码相似,就不写了
复制代码



  • 执行调用点
@Slf4j
@RestController
@RequiredArgsConstructor(onConstructor = @__(@Autowired))
public class ShareAdminController {
    private final ShareSeataService shareSeataService;
    @GetMapping("tcc-commit")
    public String tccTransactionCommit() {
        Map<String, String> map = new HashMap<>();
        this.shareSeataService.tccTransactionCommit(map);
        String xid = map.get("xid");
        // 结果T
        return ResultHolder.getActionOneResult(xid);
    }
    @GetMapping("/tcc-rollback")
    public String tccTransactionRollback() {
       Map<String, String> map = new HashMap<>();
       try {
          this.shareSeataService.tccTransactionRollback(map);
       } catch (Throwable t) {
          log.warn("事务回滚..", t);
       }
       String xid = map.get("xid");
       // 结果R
       return ResultHolder.getActionOneResult(xid);
   }
}
复制代码



定义状态机⽂件:
{
    "Name": "reduceInventoryAndBalance",
    "Comment": "reduce inventory then reduce balance in a transaction",
    "StartState": "ReduceInventory",
    "Version": "0.0.1",
    "States": {
        "ReduceInventory": {
            "Type": "ServiceTask",
            "ServiceName": "inventoryAction",
            "ServiceMethod": "reduce",
            "CompensateState": "CompensateReduceInventory",
            "Next": "ChoiceState",
            "Input": [
                "$.[businessKey]",
                "$.[count]"
            ],
            "Output": {
                "reduceInventoryResult": "$.#root"
            },
            "Status": {
                "#root == true": "SU",
                "#root == false": "FA",
                "$Exception{java.lang.Throwable}": "UN"
            }
        },
        "ChoiceState": {
            "Type": "Choice",
            "Choices": [
                {
                    "Expression": "[reduceInventoryResult] == true",
                    "Next": "ReduceBalance"
                }
            ],
            "Default": "Fail"
        },
        "ReduceBalance": {
            "Type": "ServiceTask",
            "ServiceName": "balanceAction",
            "ServiceMethod": "reduce",
            "CompensateState": "CompensateReduceBalance",
            "Input": [
                "$.[businessKey]",
                "$.[amount]",
                {
                    "throwException": "$.[mockReduceBalanceFail]"分布式事务27
                }
            ],
            "Output": {
                "compensateReduceBalanceResult": "$.#root"
            },
            "Status": {
                "#root == true": "SU",
                "#root == false": "FA",
                "$Exception{java.lang.Throwable}": "UN"
            },
            "Catch": [
                {
                    "Exceptions": [
                        "java.lang.Throwable"
                    ],
                    "Next": "CompensationTrigger"
                }
            ],
            "Next": "Succeed"
        },
        "CompensateReduceInventory": {
            "Type": "ServiceTask",
            "ServiceName": "inventoryAction",
            "ServiceMethod": "compensateReduce",
            "Input": [
                "$.[businessKey]"
            ]
        },
        "CompensateReduceBalance": {
            "Type": "ServiceTask",
            "ServiceName": "balanceAction",
            "ServiceMethod": "compensateReduce",
            "Input": [
                "$.[businessKey]"
            ]
        },
        "CompensationTrigger": {
            "Type": "CompensationTrigger",
            "Next": "Fail"
        },
        "Succeed": {
            "Type": "Succeed"
        },
        "Fail": {
            "Type": "Fail",
            "ErrorCode": "PURCHASE_FAILED",
            "Message": "purchase failed"
        }
    }
}
复制代码

测试代码:

public class LocalSagaTransactionStarter {
        public static void main(String[] args) {
            AbstractApplicationContext applicationContext = new ClassPathXmlApplication
            Context(new String[] {"spring/seata-saga.xml"});
            StateMachineEngine stateMachineEngine = (StateMachineEngine) applicationCon
            text.getBean("stateMachineEngine");
            transactionCommittedDemo(stateMachineEngine);
            transactionCompensatedDemo(stateMachineEngine);
            new ApplicationKeeper(applicationContext).keep();
        }
        private static void transactionCommittedDemo(StateMachineEngine stateMachineEng
ine) {
            Map<String, Object> startParams = new HashMap<>(3);
            String businessKey = String.valueOf(System.currentTimeMillis());
            startParams.put("businessKey", businessKey);
            startParams.put("count", 10);
            startParams.put("amount", new BigDecimal("100"));
//sync test
            StateMachineInstance inst = stateMachineEngine.startWithBusinessKey("reduce
                    InventoryAndBalance", null, businessKey, startParams);
                    Assert.isTrue(ExecutionStatus.SU.equals(inst.getStatus()), "saga transactio
                            n execute failed. XID: " + inst.getId());
            System.out.println("saga transaction commit succeed. XID: " + inst.getId())
            ;
            inst = stateMachineEngine.getStateMachineConfig().getStateLogStore().getSta
            teMachineInstanceByBusinessKey(businessKey, null);
            Assert.isTrue(ExecutionStatus.SU.equals(inst.getStatus()), "saga transactio
                    n execute failed. XID: " + inst.getId());
//async test
            businessKey = String.valueOf(System.currentTimeMillis());
            inst = stateMachineEngine.startWithBusinessKeyAsync("reduceInventoryAndBala
                    nce", null, businessKey, startParams, CALL_BACK);
                    waittingForFinish(inst);
            Assert.isTrue(ExecutionStatus.SU.equals(inst.getStatus()), "saga transactio
                    n execute failed. XID: " + inst.getId());
            分布式事务
            29
            System.out.println("saga transaction commit succeed. XID: " + inst.getId())
            ;
        }
        private static void transactionCompensatedDemo(StateMachineEngine stateMachineE
ngine) {
            Map<String, Object> startParams = new HashMap<>(4);
            String businessKey = String.valueOf(System.currentTimeMillis());
            startParams.put("businessKey", businessKey);
            startParams.put("count", 10);
            startParams.put("amount", new BigDecimal("100"));
            startParams.put("mockReduceBalanceFail", "true");
//sync test
            StateMachineInstance inst = stateMachineEngine.startWithBusinessKey("reduce
                    InventoryAndBalance", null, businessKey, startParams);
//async test
                    businessKey = String.valueOf(System.currentTimeMillis());
            inst = stateMachineEngine.startWithBusinessKeyAsync("reduceInventoryAndBala
                    nce", null, businessKey, startParams, CALL_BACK);
                    waittingForFinish(inst);
            Assert.isTrue(ExecutionStatus.SU.equals(inst.getCompensationStatus()), "sag
                    a transaction compensate failed. XID: " + inst.getId());
            System.out.println("saga transaction compensate succeed. XID: " + inst.getI
                    d());
        }
        private static volatile Object lock = new Object();
        private static AsyncCallback CALL_BACK = new AsyncCallback() {
            @Override
            public void onFinished(ProcessContext context, StateMachineInstance stateMach
ineInstance) {
                synchronized (lock){
                    lock.notifyAll();
                }
            }
            @Override
            public void onError(ProcessContext context, StateMachineInstance stateMachine
Instance, Exception exp) {
                synchronized (lock){
                    lock.notifyAll();
                }
            }
        };
        private static void waittingForFinish(StateMachineInstance inst){
            synchronized (lock){
                if(ExecutionStatus.RU.equals(inst.getStatus())){
                    try {
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }
}
复制代码




Seata saga模式


Saga 事务:最终一致性



方案简介


Saga 事务核心思想是将长事务拆分为多个本地短事务,由 Saga 事务协调器协调,如果正常结束那就正常完成,如果某个步骤失败,则根据相反顺序一次调用补偿操作



处理流程


Saga事务基本协议


  1. 每个 Saga 事务由一系列幂等的有序子事务(sub-transaction) Ti 组成。
  2. 每个 Ti 都有对应的幂等补偿动作 Ci,补偿动作用于撤销 Ti 造成的结果。
  3. 可以看到,和 TCC 相比,Saga 没有“预留”动作,它的 Ti 就是直接提交到库。

代码实现

// 接⼝略
public class BalanceActionImpl implements BalanceAction {
    private static final Logger LOGGER = LoggerFactory.getLogger(BalanceActionImpl.class);
    @Override
    public boolean reduce(String businessKey, BigDecimal amount, Map<String, Object> params) {
       if(params != null && "true".equals(params.get("throwException"))){
         throw new RuntimeException("reduce balance failed");
       }
       LOGGER.info("reduce balance succeed, amount: " + amount + ", businessKey:" + businessKey);
       return true;
    }
      @Override
      public boolean compensateReduce(String businessKey, Map<String, Object> params) {
            if(params != null && "true".equals(params.get("throwException"))){
                  throw new RuntimeException("compensate reduce balance failed");
            }
            LOGGER.info("compensate reduce balance succeed, businessKey:" + businessKey);
            return true;
      }
}
// 接⼝略
public class InventoryActionImpl implements InventoryAction {
     private static final Logger LOGGER = LoggerFactory.getLogger(InventoryActionImpl.class);
     @Override
     public boolean reduce(String businessKey, int count) {
          LOGGER.info("reduce inventory succeed, count: " + count + ", businessKey:" + businessKey);
          return true;
     }
     @Override
     public boolean compensateReduce(String businessKey) {
          LOGGER.info("compensate reduce inventory succeed, businessKey:" + businessKey);
          return true;
     }
}
复制代码

Seata XA模式


官⽅⽂档


seata.io/zh-cn/docs/…


代码演示


  • 添加Seata的依赖 & 配置
  • 你平时的JDBC代码怎么写,依然怎么写。




4种模式对⽐与选择


AT


优势:


  • 使⽤简单:对业务侵⼊性⼩


缺点:


  • 性能中等
  • 有全局锁




适⽤场景:
  • 适⽤于对性能没有特别⾼的要求的场景
  • 适⽤于不希望对业务进⾏改造的场景



TCC


优势


  • 性能会⽐ AT 模式⾼很多
缺点

相对于 AT 模式,TCC 模式对业务代码有⼀定的侵⼊性

  • 适⽤场景: 适⽤于核⼼系统等对性能有很⾼要求的场景



Saga


优势:
  • ⼀阶段提交本地数据库事务,⽆锁,⾼性能;
  • 参与者可以采⽤事务驱动异步执⾏,⾼吞吐;
  • 补偿服务即正向服务的“反向”,易于理解,易于实现;


缺点:


  • Saga 模式由于⼀阶段已经提交本地数据库事务,且没有进⾏“预留”动作,所以不能保证隔离性。后续会讲到对于缺乏隔离性的应对措施。


适⽤场景:


  • 业务流程⻓/多
  • 参与者包含其他公司或遗留系统服务,⽆法提供 TCC 模式要求的三个接⼝
  • 典型业务系统:如⾦融⽹络(与外部⾦融机构对接)、互联⽹微贷、渠道整合、分布式架构服务
  • 集成等业务系统
  • 银⾏业⾦融机构使⽤⼴泛




XA


优势:


  • ⽆侵⼊
缺点:
  • 性能较差
  • 需要数据库⽀持XA



适⽤场景:


  • 强⼀致性的解决⽅案,适⽤于对⼀致性要求⾮常⾼的场景(使⽤较少)




相关文章
|
11天前
|
存储 缓存 安全
某鱼电商接口架构深度剖析:从稳定性到高性能的技术密码
某鱼电商接口架构揭秘:分层解耦、安全加固、性能优化三维设计,实现200ms内响应、故障率低于0.1%。详解三层架构、多引擎存储、异步发布、WebSocket通信与全链路防护,助力开发者突破电商接口“三难”困境。
|
13天前
|
机器学习/深度学习 人工智能 搜索推荐
万字长文深度解析最新Deep Research技术:前沿架构、核心技术与未来展望
近期发生了什么自 2025 年 2 月 OpenAI 正式发布Deep Research以来,深度研究/深度搜索(Deep Research / Deep Search)正在成为信息检索与知识工作的全新范式:系统以多步推理驱动大规模联网检索、跨源证据。
892 57
|
22天前
|
监控 数据可视化 数据库
低代码的系统化演进:从工具逻辑到平台架构的技术解读
低代码正从开发工具演变为支撑企业架构的智能平台,融合可视化开发、AI引擎与开放生态,实现高效构建、自动化运维与跨场景协同,推动数字化转型迈向智能化、系统化新阶段。
|
17天前
|
存储 人工智能 搜索推荐
拔俗AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教融合大语言模型、教育知识图谱、多模态感知与智能体技术,重构“教、学、评、辅”全链路。通过微调LLM、精准诊断错因、多模态交互与自主任务规划,实现个性化教学。轻量化部署与隐私保护设计保障落地安全,未来将向情感感知与教育深度协同演进。(238字)
|
3月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
255 2
|
3月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
184 6
|
4月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
8月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
736 0
分布式爬虫框架Scrapy-Redis实战指南
|
2月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
151 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。