python + 数学公式 + 图像 表白 LOVE YOU❤

简介: python + 数学公式 + 图像 表白 LOVE YOU❤

先来看看效果:


来,放公式和代码:

数学公式:


L:

y = 1 x y = \frac{1}{x}


O:

x 2 + y 2 = 9 x^2 + y^2 = 9


E:

x = − 3 ∣ sin ⁡ y ∣ x=-3|\sin y|

x=−3∣siny∣


V:

y = ∣ − 2 x ∣ y = |-2x|

y=∣−2x∣


Y:

y = ln ⁡ ∣ x ∣ y = \ln |x|

y=ln∣x∣


U:

y = 2 x 2 y = 2x^2

y=2x


HEART:

( x 2 + y 2 − 1 ) 3 − x 2 y 3 = 0 (x^2+y^2-1)^3-x^2y^3=0


python代码:


import matplotlib.pyplot as plt
import seaborn
import numpy
l = numpy.arange(0, 4, 0.01)
L = 1.0 / l
theta = numpy.arange(-4, 4, 0.01)
o = 3.0 * numpy.cos(theta)
O = 3.0 * numpy.sin(theta)
v = numpy.arange(-4, 4, 0.01)
V = numpy.abs(-2.0 * v)
e = numpy.arange(-3, 3, 0.01)
E = -1.0 * numpy.abs(numpy.sin(e))
y = numpy.arange(-10, 10, 0.01)
Y = numpy.log2(numpy.abs(y))
u = numpy.arange(-4, 4, 0.01)
U = 2.0 * u ** 2
points = []
for heartY in numpy.linspace(-100, 100, 500):
    for heartX in numpy.linspace(-100, 100, 500):
        if ((heartX*0.03)**2+(heartY*0.03)**2-1)**3-(heartX*0.03)**2*(heartY*0.03)**3 <= 0:
            points.append({"x": heartX, "y": heartY})
heart_x = list(map(lambda point: point["x"], points))
heart_y = list(map(lambda point: point["y"], points))
fig = plt.figure(figsize=(13, 7))
ax_L = fig.add_subplot(2, 4, 1)
ax_O = fig.add_subplot(2, 4, 2)
ax_V = fig.add_subplot(2, 4, 3)
ax_E = fig.add_subplot(2, 4, 4)
ax_Y = fig.add_subplot(2, 4, 5)
ax_O_2 = fig.add_subplot(2, 4, 6)
ax_U = fig.add_subplot(2, 4, 7)
ax_heart = fig.add_subplot(2, 4, 8)
plt.plot(colos='tomato')
ax_L.plot(l, L)
ax_O.plot(o, O)
ax_V.plot(v, V)
ax_E.plot(E, e)
ax_Y.plot(y, Y)
ax_Y.axis([-10.0, 10.0, -10.0, 5.0])
ax_O_2.plot(o, O)
ax_U.plot(u, U)
ax_heart.scatter(heart_x, heart_y, s=10, alpha=0.5)
seaborn.set_style('whitegrid')
plt.show()
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
5月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
163 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
160 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
558 7
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
88 3
|
4月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
154 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
5月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
180 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
4月前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
116 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
5月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
163 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别

热门文章

最新文章