深度学习实验:Softmax实现手写数字识别

简介: 深度学习实验:Softmax实现手写数字识别

文章相关知识点:AI遮天传 DL-回归与分类_老师我作业忘带了的博客-CSDN博客

MNIST数据集

MNIST手写数字数据集是机器学习领域中广泛使用的图像分类数据集。它包含60,000个训练样本和10,000个测试样本。这些数字已进行尺寸规格化,并在固定尺寸的图像中居中。每个样本都是一个784×1的矩阵,是从原始的28×28灰度图像转换而来的。MNIST中的数字范围是0到9。下面显示了一些示例。 注意:在训练期间,切勿以任何形式使用有关测试样本的信息。

代码清单

solver.py 这个文件中实现了训练和测试的流程。;

dataloader.py 实现了数据加载器,可用于准备数据以进行训练和测试;

visualize.py 实现了plot_loss_and_acc函数,该函数可用于绘制损失和准确率曲线;

optimizer.py 实现带momentum的SGD优化器,可用于执行参数更新;

loss.py 实现softmax_cross_entropy_loss,包含loss的计算和梯度计算;

runner.ipynb 完成所有代码后的执行文件,执行训练和测试过程。

要求

  1. 记录训练和测试的准确率。画出训练损失和准确率曲线;
  2. 比较使用和不使用momentum结果的不同,可以从训练时间,收敛性和准确率等方面讨论差异;
  3. 调整其他超参数,如学习率,Batchsize等,观察这些超参数如何影响分类性能。写下观察结果并将这些新结果记录在报告中。运行结果如下:

代码如下:

solver.py

import numpy as np
from layers import FCLayer
from dataloader import build_dataloader
from network import Network
from optimizer import SGD
from loss import SoftmaxCrossEntropyLoss
from visualize import plot_loss_and_acc
class Solver(object):
    def __init__(self, cfg):
        self.cfg = cfg
        # build dataloader
        train_loader, val_loader, test_loader = self.build_loader(cfg)
        self.train_loader = train_loader
        self.val_loader = val_loader
        self.test_loader = test_loader
        # build model
        self.model = self.build_model(cfg)
        # build optimizer
        self.optimizer = self.build_optimizer(self.model, cfg)
        # build evaluation criterion
        self.criterion = SoftmaxCrossEntropyLoss()
    @staticmethod
    def build_loader(cfg):
        train_loader = build_dataloader(
            cfg['data_root'], cfg['max_epoch'], cfg['batch_size'], shuffle=True, mode='train')
        val_loader = build_dataloader(
            cfg['data_root'], 1, cfg['batch_size'], shuffle=False, mode='val')
        test_loader = build_dataloader(
            cfg['data_root'], 1, cfg['batch_size'], shuffle=False, mode='test')
        return train_loader, val_loader, test_loader
    @staticmethod
    def build_model(cfg):
        model = Network()
        model.add(FCLayer(784, 10))
        return model
    @staticmethod
    def build_optimizer(model, cfg):
        return SGD(model, cfg['learning_rate'], cfg['momentum'])
    def train(self):
        max_epoch = self.cfg['max_epoch']
        epoch_train_loss, epoch_train_acc = [], []
        for epoch in range(max_epoch):
            iteration_train_loss, iteration_train_acc = [], []
            for iteration, (images, labels) in enumerate(self.train_loader):
                # forward pass
                logits = self.model.forward(images)
                loss, acc = self.criterion.forward(logits, labels)
                # backward_pass
                delta = self.criterion.backward()
                self.model.backward(delta)
                # updata the model weights
                self.optimizer.step()
                # restore loss and accuracy
                iteration_train_loss.append(loss)
                iteration_train_acc.append(acc)
                # display iteration training info
                if iteration % self.cfg['display_freq'] == 0:
                    print("Epoch [{}][{}]\t Batch [{}][{}]\t Training Loss {:.4f}\t Accuracy {:.4f}".format(
                        epoch, max_epoch, iteration, len(self.train_loader), loss, acc))
            avg_train_loss, avg_train_acc = np.mean(iteration_train_loss), np.mean(iteration_train_acc)
            epoch_train_loss.append(avg_train_loss)
            epoch_train_acc.append(avg_train_acc)
            # validate
            avg_val_loss, avg_val_acc = self.validate()
            # display epoch training info
            print('\nEpoch [{}]\t Average training loss {:.4f}\t Average training accuracy {:.4f}'.format(
                epoch, avg_train_loss, avg_train_acc))
            # display epoch valiation info
            print('Epoch [{}]\t Average validation loss {:.4f}\t Average validation accuracy {:.4f}\n'.format(
                epoch, avg_val_loss, avg_val_acc))
        return epoch_train_loss, epoch_train_acc
    def validate(self):
        logits_set, labels_set = [], []
        for images, labels in self.val_loader:
            logits = self.model.forward(images)
            logits_set.append(logits)
            labels_set.append(labels)
        logits = np.concatenate(logits_set)
        labels = np.concatenate(labels_set)
        loss, acc = self.criterion.forward(logits, labels)
        return loss, acc
    def test(self):
        logits_set, labels_set = [], []
        for images, labels in self.test_loader:
            logits = self.model.forward(images)
            logits_set.append(logits)
            labels_set.append(labels)
        logits = np.concatenate(logits_set)
        labels = np.concatenate(labels_set)
        loss, acc = self.criterion.forward(logits, labels)
        return loss, acc
if __name__ == '__main__':
    # You can modify the hyerparameters by yourself.
    relu_cfg = {
        'data_root': 'data',
        'max_epoch': 10,
        'batch_size': 100,
        'learning_rate': 0.1,
        'momentum': 0.9,
        'display_freq': 50,
        'activation_function': 'relu',
    }
    runner = Solver(relu_cfg)
    relu_loss, relu_acc = runner.train()
    test_loss, test_acc = runner.test()
    print('Final test accuracy {:.4f}\n'.format(test_acc))
    # You can modify the hyerparameters by yourself.
    sigmoid_cfg = {
        'data_root': 'data',
        'max_epoch': 10,
        'batch_size': 100,
        'learning_rate': 0.1,
        'momentum': 0.9,
        'display_freq': 50,
        'activation_function': 'sigmoid',
    }
    runner = Solver(sigmoid_cfg)
    sigmoid_loss, sigmoid_acc = runner.train()
    test_loss, test_acc = runner.test()
    print('Final test accuracy {:.4f}\n'.format(test_acc))
    plot_loss_and_acc({
        "relu": [relu_loss, relu_acc],
        "sigmoid": [sigmoid_loss, sigmoid_acc],
    })

dataloader.py

import os
import struct
import numpy as np
class Dataset(object):
    def __init__(self, data_root, mode='train', num_classes=10):
        assert mode in ['train', 'val', 'test']
        # load images and labels
        kind = {'train': 'train', 'val': 'train', 'test': 't10k'}[mode]
        labels_path = os.path.join(data_root, '{}-labels-idx1-ubyte'.format(kind))
        images_path = os.path.join(data_root, '{}-images-idx3-ubyte'.format(kind))
        with open(labels_path, 'rb') as lbpath:
            magic, n = struct.unpack('>II', lbpath.read(8))
            labels = np.fromfile(lbpath, dtype=np.uint8)
        with open(images_path, 'rb') as imgpath:
            magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16))
            images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784)
        if mode == 'train':
            # training images and labels
            self.images = images[:55000]  # shape: (55000, 784)
            self.labels = labels[:55000]  # shape: (55000,)
        elif mode == 'val':
            # validation images and labels
            self.images = images[55000:]  # shape: (5000, 784)
            self.labels = labels[55000:]  # shape: (5000, )
        else:
            # test data
            self.images = images  # shape: (10000, 784)
            self.labels = labels  # shape: (10000, )
        self.num_classes = 10
    def __len__(self):
        return len(self.images)
    def __getitem__(self, idx):
        image = self.images[idx]
        label = self.labels[idx]
        # Normalize from [0, 255.] to [0., 1.0], and then subtract by the mean value
        image = image / 255.0
        image = image - np.mean(image)
        return image, label
class IterationBatchSampler(object):
    def __init__(self, dataset, max_epoch, batch_size=2, shuffle=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.shuffle = shuffle
    def prepare_epoch_indices(self):
        indices = np.arange(len(self.dataset))
        if self.shuffle:
            np.random.shuffle(indices)
        num_iteration = len(indices) // self.batch_size + int(len(indices) % self.batch_size)
        self.batch_indices = np.split(indices, num_iteration)
    def __iter__(self):
        return iter(self.batch_indices)
    def __len__(self):
        return len(self.batch_indices)
class Dataloader(object):
    def __init__(self, dataset, sampler):
        self.dataset = dataset
        self.sampler = sampler
    def __iter__(self):
        self.sampler.prepare_epoch_indices()
        for batch_indices in self.sampler:
            batch_images = []
            batch_labels = []
            for idx in batch_indices:
                img, label = self.dataset[idx]
                batch_images.append(img)
                batch_labels.append(label)
            batch_images = np.stack(batch_images)
            batch_labels = np.stack(batch_labels)
            yield batch_images, batch_labels
    def __len__(self):
        return len(self.sampler)
def build_dataloader(data_root, max_epoch, batch_size, shuffle=False, mode='train'):
    dataset = Dataset(data_root, mode)
    sampler = IterationBatchSampler(dataset, max_epoch, batch_size, shuffle)
    data_lodaer = Dataloader(dataset, sampler)
    return data_lodaer

loss.py

import numpy as np
# a small number to prevent dividing by zero, maybe useful for you
EPS = 1e-11
class SoftmaxCrossEntropyLoss(object):
    def forward(self, logits, labels):
        """
          Inputs: (minibatch)
          - logits: forward results from the last FCLayer, shape (batch_size, 10)
          - labels: the ground truth label, shape (batch_size, )
        """
        ############################################################################
        # TODO: Put your code here
        # Calculate the average accuracy and loss over the minibatch
        # Return the loss and acc, which will be used in solver.py
        # Hint: Maybe you need to save some arrays for backward
        self.one_hot_labels = np.zeros_like(logits)
        self.one_hot_labels[np.arange(len(logits)), labels] = 1
        self.prob = np.exp(logits) / (EPS + np.exp(logits).sum(axis=1, keepdims=True))
        # calculate the accuracy
        preds = np.argmax(self.prob, axis=1) # self.prob, not logits.
        acc = np.mean(preds == labels)
        # calculate the loss
        loss = np.sum(-self.one_hot_labels * np.log(self.prob + EPS), axis=1)
        loss = np.mean(loss)
        ############################################################################
        return loss, acc
    def backward(self):
        ############################################################################
        # TODO: Put your code here
        # Calculate and return the gradient (have the same shape as logits)
        return self.prob - self.one_hot_labels
        ############################################################################

network.py

class Network(object):
    def __init__(self):
        self.layerList = []
        self.numLayer = 0
    def add(self, layer):
        self.numLayer += 1
        self.layerList.append(layer)
    def forward(self, x):
        # forward layer by layer
        for i in range(self.numLayer):
            x = self.layerList[i].forward(x)
        return x
    def backward(self, delta):
        # backward layer by layer
        for i in reversed(range(self.numLayer)): # reversed
            delta = self.layerList[i].backward(delta)

optimizer.py

import numpy as np
class SGD(object):
    def __init__(self, model, learning_rate, momentum=0.0):
        self.model = model
        self.learning_rate = learning_rate
        self.momentum = momentum
    def step(self):
        """One backpropagation step, update weights layer by layer"""
        layers = self.model.layerList
        for layer in layers:
            if layer.trainable:
                ############################################################################
                # TODO: Put your code here
                # Calculate diff_W and diff_b using layer.grad_W and layer.grad_b.
                # You need to add momentum to this.
                # Weight update with momentum
                if not hasattr(layer, 'diff_W'):
                    layer.diff_W = 0.0
                layer.diff_W = layer.grad_W + self.momentum * layer.diff_W
                layer.diff_b = layer.grad_b
                layer.W += -self.learning_rate * layer.diff_W
                layer.b += -self.learning_rate * layer.diff_b
                # # Weight update without momentum
                # layer.W += -self.learning_rate * layer.grad_W
                # layer.b += -self.learning_rate * layer.grad_b
                ############################################################################

visualize.py

import matplotlib.pyplot as plt
import numpy as np
def plot_loss_and_acc(loss_and_acc_dict):
    # visualize loss curve
    plt.figure()
    min_loss, max_loss = 100.0, 0.0
    for key, (loss_list, acc_list) in loss_and_acc_dict.items():
        min_loss = min(loss_list) if min(loss_list) < min_loss else min_loss
        max_loss = max(loss_list) if max(loss_list) > max_loss else max_loss
        num_epoch = len(loss_list)
        plt.plot(range(1, 1 + num_epoch), loss_list, '-s', label=key)
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.xticks(range(0, num_epoch + 1, 2))
    plt.axis([0, num_epoch + 1, min_loss - 0.1, max_loss + 0.1])
    plt.show()
    # visualize acc curve
    plt.figure()
    min_acc, max_acc = 1.0, 0.0
    for key, (loss_list, acc_list) in loss_and_acc_dict.items():
        min_acc = min(acc_list) if min(acc_list) < min_acc else min_acc
        max_acc = max(acc_list) if max(acc_list) > max_acc else max_acc
        num_epoch = len(acc_list)
        plt.plot(range(1, 1 + num_epoch), acc_list, '-s', label=key)
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.xticks(range(0, num_epoch + 1, 2))
    plt.axis([0, num_epoch + 1, min_acc, 1.0])
    plt.show()
相关文章
|
机器学习/深度学习 自然语言处理 PyTorch
【深度学习】实验12 使用PyTorch训练模型
【深度学习】实验12 使用PyTorch训练模型
161 0
|
8月前
|
机器学习/深度学习 算法 TensorFlow
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
132 0
|
3月前
|
机器学习/深度学习 监控 数据可视化
深度学习中实验、观察与思考的方法与技巧
在深度学习中,实验、观察与思考是理解和改进模型性能的关键环节。
57 5
|
3月前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
226 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
3月前
|
机器学习/深度学习 数据挖掘 知识图谱
深度学习之材料科学中的自动化实验设计
基于深度学习的材料科学中的自动化实验设计是一个新兴领域,旨在通过机器学习模型,尤其是深度学习模型,来优化和自动化材料实验的设计流程。
60 1
|
5月前
|
机器学习/深度学习 存储 算法框架/工具
【深度学习】猫狗识别TensorFlow2实验报告
本文介绍了使用TensorFlow 2进行猫狗识别的实验报告,包括实验目的、采用卷积神经网络(CNN)进行训练的过程,以及如何使用交叉熵作为损失函数来识别猫狗图像数据集。
196 1
|
5月前
|
机器学习/深度学习 算法 测试技术
【深度学习】手写数字识别Tensorflow2实验报告
文章介绍了使用TensorFlow 2进行手写数字识别的实验报告,包括实验目的、采用全连接神经网络模型进行训练的过程、以及如何使用交叉熵作为损失函数来识别MNIST数据集的手写数字。
190 0
|
机器学习/深度学习 自然语言处理
【深度学习】实验17 使用GAN生成手写数字样本
【深度学习】实验17 使用GAN生成手写数字样本
150 0
|
机器学习/深度学习 数据采集 PyTorch
深度学习代码怎么读-小白阶段性思路(以手写数字识别应用为例)
深度学习代码怎么读-小白阶段性思路(以手写数字识别应用为例)
232 0
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】实验18 自然语言处理
【深度学习】实验18 自然语言处理
84 0