PolarDB 开源版 轨迹应用实践 - 出行、配送、快递等业务的调度; 传染溯源; 刑侦

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力. 本文将介绍PolarDB 开源版 轨迹应用实践, 例如: - 出行、配送、快递等业务的调度 - 快递员有预规划的配送轨迹(轨迹) - 客户有发货需求(时间、位置) - 根据轨迹估算最近的位置和时间 - 通过多个嫌疑人的轨迹, 计算嫌疑人接触的地点、时间点

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版 轨迹应用实践, 例如:

  • 出行、配送、快递等业务的调度

    • 快递员有预规划的配送轨迹(轨迹)
    • 客户有发货需求(时间、位置)
    • 根据轨迹估算最近的位置和时间
  • 通过多个嫌疑人的轨迹, 计算嫌疑人接触的地点、时间点
  • 根据轨迹, 对传染源进行溯源

测试环境为macOS+docker, PolarDB部署请参考下文:

轨迹介绍

轨迹的定义:

  • 位置1、位置2、...位置N 组成的线段, 加上 开始时间、结束时间

轨迹的常见计算:

  • 两个轨迹何时最接近
  • 最近的距离是多少
  • 两个轨迹最近时的位置分别是什么

相关函数

https://postgis.net/docs/manual-3.3/reference.html#Temporal

8.18. Linear Referencing

  • ST_LineInterpolatePoint — Returns a point interpolated along a line at a fractional location.
  • ST_3DLineInterpolatePoint — Returns a point interpolated along a 3D line at a fractional location.
  • ST_LineInterpolatePoints — Returns points interpolated along a line at a fractional interval.
  • ST_LineLocatePoint — Returns the fractional location of the closest point on a line to a point.
  • ST_LineSubstring — Returns the part of a line between two fractional locations.
  • ST_LocateAlong — Returns the point(s) on a geometry that match a measure value.
  • ST_LocateBetween — Returns the portions of a geometry that match a measure range.
  • ST_LocateBetweenElevations — Returns the portions of a geometry that lie in an elevation (Z) range.
  • ST_InterpolatePoint — Returns the interpolated measure of a geometry closest to a point.
  • ST_AddMeasure — Interpolates measures along a linear geometry.

8.19. Trajectory Functions
Abstract
These functions support working with trajectories. A trajectory is a linear geometry with increasing measures (M value) on each coordinate. Spatio-temporal data can be modeled by using relative times (such as the epoch) as the measure values.

  • ST_IsValidTrajectory — Tests if the geometry is a valid trajectory.
  • ST_ClosestPointOfApproach — Returns a measure at the closest point of approach of two trajectories.
  • ST_DistanceCPA — Returns the distance between the closest point of approach of two trajectories.
  • ST_CPAWithin — Tests if the closest point of approach of two trajectories is within the specified distance.

轨迹计算举例

1、构造3维轨迹:

ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5, 1 1 1)'::geometry,  -- 三个3维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
AI 代码解读

2、构造2维轨迹:

ST_AddMeasure('LINESTRING (0 0, 10 0, 1 1)'::geometry,  -- 三个2维点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  -- 开始时间  
    extract(epoch from '2015-05-26 11:00'::timestamptz)   -- 结束时间  
)  
AI 代码解读

3、返回2条轨迹距离最接近时的第一个时间点(因为2条轨迹可能有多个时间处于最近距离, 但是这里只返回最早的时间点, 如果要求后面的时间点, 可以切分线段).

  • 两个轨迹何时最接近
  • 最近的距离是多少
  • 两个轨迹最近时的位置分别是什么
-- Return the time in which two objects moving between 10:00 and 11:00  
-- are closest to each other and their distance at that point  
WITH inp AS ( SELECT  
  ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,  -- 如果轨迹是一个点, 这里就直接填2个一样位置的点  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) a,  
  ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2, 15 3 5)'::geometry,  -- 两条轨迹的点数可以不一样  
    extract(epoch from '2015-05-26 10:00'::timestamptz),  
    extract(epoch from '2015-05-26 11:00'::timestamptz)  
  ) b  
), cpa AS (  
  SELECT ST_ClosestPointOfApproach(a,b) m FROM inp  -- 计算a,b 2条轨迹距离最近时的最早时间点  
), points AS (  
  SELECT ST_Force3DZ(ST_GeometryN(ST_LocateAlong(a,m),1)) pa,   -- ST_LocateAlong(a,m)  计算a轨迹在某个时间点m对应的位置点(集合点)   
         ST_Force3DZ(ST_GeometryN(ST_LocateAlong(b,m),1)) pb    -- ST_GeometryN 返回集合的第一个点, 由于a,b线段是3维线段, 所以返回后需要再使用ST_Force3DZ格式化一下?  
  FROM inp, cpa  
)  
SELECT st_astext(pa) pa, st_astext(pb) pb,   
       to_timestamp(m) t,  -- a,b线段距离最近时的最早的时间点m   
       ST_Distance(pa,pb) distance  -- a,b线段最接近的pa,pb点的距离   
FROM points, cpa;  
  
                       pa                        |                               pb                               |               t               |     distance       
-------------------------------------------------+----------------------------------------------------------------+-------------------------------+------------------  
 POINT Z (5.798478121227689 0 2.899239060613844) | POINT Z (9.041623081002845 1.24653140991643 3.972251279331437) | 2015-05-26 10:34:47.452124+00 | 3.47445388313376  
(1 row)  
AI 代码解读

以上SQL应用场景举例:

1、出行、配送、快递等业务的调度, 例如

  • 快递员预规划的配送轨迹(轨迹a)
  • 客户有发货需求(时间、位置)(轨迹b)

2、多个嫌疑人的轨迹

  • 计算嫌疑人接触的地点、时间点

3、根据传染病人的多人多轨迹进行轨迹的碰撞计算, 对传染源进行溯源追踪.

参考

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
打赏
0
0
0
0
20685
分享
相关文章
PolarDB开源数据库进阶课18 通过pg_bulkload适配pfs实现批量导入提速
本文介绍了如何修改 `pg_bulkload` 工具以适配 PolarDB 的 PFS(Polar File System),从而加速批量导入数据。实验环境依赖于 Docker 容器中的 loop 设备模拟共享存储。通过对 `writer_direct.c` 文件的修改,替换了一些标准文件操作接口为 PFS 对应接口,实现了对 PolarDB 15 版本的支持。测试结果显示,使用 `pg_bulkload` 导入 1000 万条数据的速度是 COPY 命令的三倍多。此外,文章还提供了详细的步骤和代码示例,帮助读者理解和实践这一过程。
8 0
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
10 0
PolarDB开源数据库进阶课16 接入PostGIS全功能及应用举例
本文介绍了如何在PolarDB数据库中接入PostGIS插件全功能,实现地理空间数据处理。此外,文章还提供了使用PostGIS生成泰森多边形(Voronoi diagram)的具体示例,帮助用户理解其应用场景及操作方法。
8 0
PolarDB开源数据库进阶课15 集成DeepSeek等大模型
本文介绍了如何在PolarDB数据库中接入私有化大模型服务,以实现多种应用场景。实验环境依赖于Docker容器中的loop设备模拟共享存储,具体搭建方法可参考相关系列文章。文中详细描述了部署ollama服务、编译并安装http和openai插件的过程,并通过示例展示了如何使用这些插件调用大模型API进行文本分析和情感分类等任务。此外,还探讨了如何设计表结构及触发器函数自动处理客户反馈数据,以及生成满足需求的SQL查询语句。最后对比了不同模型的回答效果,展示了deepseek-r1模型的优势。
14 0
PolarDB开源数据库进阶课12 集群版转换为单机版
本文介绍了如何将“共享存储实例”转换为“本地存储实例”,实验环境依赖于Docker容器中的loop设备模拟共享存储。具体步骤包括准备本地目录、停库、拷贝数据、修改配置文件并启动实例。通过这些操作,可以实现从共享存储到本地存储的平滑转换。相关系列文章详细记录了PolarDB RAC一写多读集群的搭建与管理,提供了丰富的实战经验。
11 2
PolarDB开源数据库进阶课1 搭建共享存储集群
在笔记本上构建PolarDB RAC环境,本文介绍了一种适用于Windows、macOS和Linux的方法:通过将宿主机上的文件模拟为块设备,并在多个Docker容器中使用loop设备共享该文件。此方法解决了macOS不支持直接挂载块设备的问题。
12 2
PolarDB开源数据库进阶课11 激活容灾(Standby)节点
本文介绍了如何激活PolarDB容灾(Standby)节点,实验环境依赖于Docker容器中用loop设备模拟共享存储。通过`pg_ctl promote`命令可以将Standby节点提升为主节点,使其能够接收读写请求。激活后,原Standby节点不能再成为PolarDB集群的Standby节点。建议删除对应的复制槽位以避免WAL文件堆积。相关操作和配置请参考系列文章及视频教程。
12 1
PolarDB开源数据库进阶课9 读写分离
本文介绍了如何配置读写分离工具pgpool-II for PolarDB,使应用程序能够透明地实现读写分离。
10 1
PolarDB开源数据库进阶课5 在线备份
本文介绍了如何在PolarDB RAC一写多读集群中进行在线备份,特别针对共享存储模式。通过使用`polar_basebackup`工具,可以将实例的本地数据和共享数据备份到本地盘中。实验环境依赖于Docker容器中用loop设备模拟的共享存储。
11 1
PolarDB开源数据库进阶课3 共享存储在线扩容
本文继续探讨穷鬼玩PolarDB RAC一写多读集群系列,介绍如何在线扩容共享存储。实验环境依赖《在Docker容器中用loop设备模拟共享存储》搭建。主要步骤包括:1) 扩容虚拟磁盘;2) 刷新loop设备容量;3) 使用PFS工具进行文件系统扩容;4) 更新数据库实例以识别新空间。通过这些步骤,成功将共享存储从20GB扩容至30GB,并确保所有节点都能使用新的存储空间。
9 1

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等