python编程作业--盐度对流方程的差分格式设计与讨论

简介: python编程作业--盐度对流方程的差分格式设计与讨论

使用python对于盐度对流差分格式设计与讨论



题目要求如下:



7a6c331576b54921a783d1770e1a9044.png


差分格式设计如下:



方案1、蛙跳格式(时间和距离都用中央差)


d1e667266a9e478792a8cd6305767eb3.pngdd5ffd4ec6fd41a1aa18de35643afd9d.png

be73800eb1284353a2a7aaa1774c7557.png


python代码如下:


"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
"""
分析说明:μ<1时,蛙跃格式是稳定的,但是会有频散现象发生,耗散比较小,盐度场峰值基本保持不变;μ>1时,明显看到格式不稳定。
"""
import numpy as np
import matplotlib.pyplot as plt
ss=np.zeros((2002,1002))   
dx=10
u=1
dt=5
#mu=u*dt/dx;
mu=1.1 #1.01,0.01,0.05
ss[0,300:401]=10
for n  in range(2001):
    for  j in range(1001):
        if (n==1)&(j==1):
            s1=ss[n,j]
            s2=ss[n,j]
            ss[n+1,j]=s1+mu*(-ss[n,j+1]+s2)
        elif n==1 & j!=1:
            s1=ss[n,j]
            ss[n+1,j]=s1+mu*(-ss[n,j+1]+ss[n,j-1])
        elif j==1 &n!=1:
            s2=ss[n,j]
            ss[n+1,j]=ss[n-1,j]+mu*(-ss[n,j+1]+s2)
        else :
            ss[n+1,j]=ss[n-1,j]+mu*(-ss[n,j+1]+ss[n,j-1])
plt.rcParams['axes.unicode_minus'] = False
fig=plt.figure(figsize=(15,15))   
ax=fig.add_subplot(1,1,1)
ax.plot(ss[1000])
# ax.set_xlim(0,1000)
# ax.set_ylim(-3,14)
ax.set_xlabel('area range',fontsize=30)
ax.set_ylabel('salinity',fontsize=30)
ax.tick_params(which='major',direction='out', pad=8,labelsize=25,length=10,\
                axis='both',bottom=True, left=True, right=False, top=False)
ax.set_title('t=1000s',fontsize=30)


图片如下:


8ed4f34af6914eca9407805b32b58acb.png

a9c64bfa169f4e1198dc37d2a0d80a46.png

b43537db14834d2ca42cbc6d14e75cdb.png


分析结论:


μ<1时,蛙跃格式是稳定的,但是会有频散现象发生,耗散比较小,盐度场峰值基本保持不变;μ>1时,明显看到格式不稳定。


方案2、迎风格式(时间用前差,距离用后差)


0cefcd504d9347b4bd0c289c39f1bae4.png

5ca47c7aac8b41c28e24c22a2ddc4711.png

8105fa7431424e2f914a5fad84e0fdc5.png


python 核心代码如下:


for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-mu*(ss[n,j]-s1)
        else :
            ss[n+1,j]=ss[n,j]-mu*(ss[n,j]-ss[n,j-1])


图片如下:


7624164008864d57bc8889d88cdbdaee.png69b819e3eece4a439f5b3132fd545595.png62aae5bdefd643abb6517eb870909856.png


分析结论:

在μ<1时,迎风格式是稳定的,没有发生频散,但是发生耗散,盐柱的棱角变得圆滑。μ>1时,格式变得不稳定。。


方案3、欧拉格式(时间用前差,距离用中央差)


fe19fbe6583345e9becb278752505770.pnga86a249f8e184609ac2013dd95e0ac6d.png

8d3b8520b0a2484d84a5accbe417bc93.png


python 核心代码:


for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1]-s1)
        else :
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1]-ss[n,j-1])


图片如下:

3379184348a84d97985cbc36812930db.png532de27fa3ea437cb0dc21c165a8224a.png


8dcbfba440a94dec8e1bbcd64f2ca6b7.png


分析结论:

欧拉法是一种绝对不稳定的格式,无论mu取多小,都是不稳定的


方案4、lax格式(在欧拉格式右边增加一个耗散项)


49b8591924764240a2f2d99a4890d4f9.png

271f202cd3b74666a5b068aada177afa.png

7ddc105084064e169910bdaa4a861d26.png


python 核心代码:


mu=1.1
miu2=u*u*dt/(dx*dx)
for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1])+0.5*mu*s1+miu2*ss[n,j+1]-2*miu2*ss[n,j]+miu2*s1
        else :
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1])+0.5*mu*ss[n,j-1]+miu2*ss[n,j+1]-2*miu2*ss[n,j]+miu2*ss[n,j-1]


图片如下:


92e157be57914d649a4d355715d66154.png65753b3c30aa4c8c9915ce3231ca611a.png64483afa4e704cdc822a0d30337de6a8.png


分析结论:

在μ<1时,此格式是稳定的,有少许频散,耗散也比较少,盐度值是比较稳定的。
在μ>1时,格式不稳定。

ps:代码可能有点粗糙,只是简单记录一下,欢迎评论讨论。


            一个努力学习python的海洋人
            水平有限,欢迎指正!!!
            欢迎评论、收藏、点赞、转发、关注。
            关注我不后悔,记录学习进步的过程~~


相关文章
|
12天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
12天前
|
程序员 开发者 Python
Python网络编程基础(Socket编程) 错误处理和异常处理的最佳实践
【4月更文挑战第11天】在网络编程中,错误处理和异常管理不仅是为了程序的健壮性,也是为了提供清晰的用户反馈以及优雅的故障恢复。在前面的章节中,我们讨论了如何使用`try-except`语句来处理网络错误。现在,我们将深入探讨错误处理和异常处理的最佳实践。
|
16天前
|
缓存 监控 Python
解密Python中的装饰器:优雅而强大的编程利器
Python中的装饰器是一种强大而又优雅的编程工具,它能够在不改变原有代码结构的情况下,为函数或类添加新的功能和行为。本文将深入解析Python装饰器的原理、用法和实际应用,帮助读者更好地理解和利用这一技术,提升代码的可维护性和可扩展性。
|
1月前
|
编译器 测试技术 C++
【Python 基础教程 01 全面介绍】 Python编程基础全攻略:一文掌握Python语法精髓,从C/C++ 角度学习Python的差异
【Python 基础教程 01 全面介绍】 Python编程基础全攻略:一文掌握Python语法精髓,从C/C++ 角度学习Python的差异
164 0
|
5天前
|
安全 数据处理 开发者
《Python 简易速速上手小册》第7章:高级 Python 编程(2024 最新版)
《Python 简易速速上手小册》第7章:高级 Python 编程(2024 最新版)
17 1
|
5天前
|
人工智能 数据挖掘 程序员
《Python 简易速速上手小册》第1章:Python 编程入门(2024 最新版)
《Python 简易速速上手小册》第1章:Python 编程入门(2024 最新版)
34 0
|
6天前
|
API Python
Python模块化编程:面试题深度解析
【4月更文挑战第14天】了解Python模块化编程对于构建大型项目至关重要,它涉及代码组织、复用和维护。本文深入探讨了模块、包、导入机制、命名空间和作用域等基础概念,并列举了面试中常见的模块导入混乱、不适当星号导入等问题,强调了避免循环依赖、合理使用`__init__.py`以及理解模块作用域的重要性。掌握这些知识将有助于在面试中自信应对模块化编程的相关挑战。
18 0
|
6天前
|
Python
Python金融应用编程:衍生品定价和套期保值的随机过程
Python金融应用编程:衍生品定价和套期保值的随机过程
|
7天前
|
Python
python面型对象编程进阶(继承、多态、私有化、异常捕获、类属性和类方法)(上)
python面型对象编程进阶(继承、多态、私有化、异常捕获、类属性和类方法)(上)
44 0
|
7天前
|
机器学习/深度学习 算法 定位技术
python中使用马尔可夫决策过程(MDP)动态编程来解决最短路径强化学习问题
python中使用马尔可夫决策过程(MDP)动态编程来解决最短路径强化学习问题
23 1