如何通过抽样分布估计你的模型的不确定性

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 如何通过抽样分布估计你的模型的不确定性

当开始一个新的数据科学项目时,首要任务之一将是获取数据,以便能够评估项目的范围,并开始了解可以实现的目标。如果条件允许拥有一个大的的数据集来进行研究是非常好的情况,然而更多的时候,你将获得一个小的数据集来构建一个基线模型,然后,随着时间的推移,你将收集更多的数据,重新训练你的模型,并改进它。这种情况在加入一家传统上不是“数据驱动”,而是刚刚开始发现数据科学能为他们做什么的公司时很常见。

虽然我们知道使用小数据集会导致模型在训练期间快速过拟合,但还有一个经常很少讨论的问题,即模型性能的不确定性问题。在这篇文章中,我将演示如何评估模型性能的不确定性,以及数据集的大小如何影响它。

性能不确定性的出现是因为你在测试集上评估模型,而测试集通常是从初始数据集中随机抽取的样本。由于测试集是我们整个数据集的随机样本(它扮演统计总体的角色),我们从它计算的所有统计数据都是随机变量,它们具有一些潜在的分布。与其说“我们的模型有一个精度为x”,我们应该说““我们的模型的平均精度为μ,标准差为σ”,其中σ表示统计估计的不确定性。通过在许多随机生成的测试集上评估你的模型并记录结果,你可以估计你的统计数据的抽样分布,从而估计μ和σ。我想重申,标准差是我们感兴趣的数量,这告诉我们多少我们的统计变化已经计算在许多随机测试集,而不是平均数标准误差这告诉我们多远从人口抽样分布的均值。

当你从总体(整个数据集)生成更多样本(测试集)时,由于中心极限定理,任何统计量的采样分布都接近正态分布。用符号X表示我们的统计信息,其抽样分布在数学上表示为:

640.png

其中n是测试集的大小,μ是分布的平均值,而σ²/ n是其方差。我们看到采样分布的标准偏差(方差的平方根)取决于测试集大小为1 /√n,并且随着我们的样本大小趋向于零,我们的不确定性将开始发散,因此,小的数据集会带来较大的不确定性。这正是我将在本文中通过估算用于评估二元分类器性能的4种常用统计数据的抽样分布来证明的结果:准确性,精度,召回率和ROC曲线下的面积。

模型

对于本实验,我使用了人口普查收入数据集,该数据集可从此处的UCI机器学习存储库下载,其中的任务是将一个人的年收入分类为大于或小于5万美元。该数据集包含24,698个收入低于50k的人和7839个收入超过 50k的人。我执行了一些基本的清理工作,例如删除重复项和包含空值的行,选择要素的子集,然后在执行任何建模之前使用多数类的随机欠采样来平衡类。完整的代码可以在此GitHub存储库(https://github.com/job9931/Blog-notebooks/tree/main/small_data_uncertainty)中找到,你可以随意克隆并执行自己喜欢的操作。

为了简单起见,我使用逻辑回归模型对实例进行分类。本实验的核心体现在如下所示的函数evaluate_model中。它的参数是一个数据集,一个scikit-learn管道对象,其中包括数据转换对象和分类器模型,一个预测器特征列表和一个目标变量,以及一个参数,以确定测试集的大小;它返回上面提到的四个统计数据。需要注意的是,在训练-测试分割期间没有随机种子集,因此每次调用该函数时都会生成不同的测试集。通过循环调用这个函数并记录结果,我们可以建立抽样分布。

defevaluate_model(data,pipeline,features,target,test_size=0.3):
#Train-testsplitwithnorandomseed, sodifferent#setsaregeneratedeachtimefunctioniscalled.
X, y=data[features], data[target]
split=StratifiedShuffleSplit(n_splits=1, test_size=test_size)
fortrain_index, test_indexinsplit.split(X, y):
X_train, X_test=X.loc[train_index], X.loc[test_index]
y_train, y_test=y.loc[train_index], y.loc[test_index]
#trainmodel, fitmethodoverwritestrainingoneachcallpipeline.fit(X_train,y_train)
#evaluateontestsettest_predictions=pipeline.predict(X_test)
recall=recall_score(y_test,test_predictions)
precision=precision_score(y_test,test_predictions)
acc=accuracy_score(y_test,test_predictions)
#calculatefprandtprforeachthresholdtogetanAUROCtest_probabilities=pipeline.predict_proba(X_test)[:,1]
fpr, tpr, thresholds=roc_curve(y_test,test_probabilities,pos_label=1,drop_intermediate=True)
auroc=auc(fpr,tpr)
returnrecall, precision, acc, auroc#callevaluate_modelinaloopandrecordresultsn_splits=100Recall=np.zeros(n_splits)
Precision=np.zeros(n_splits)
Accuracy=np.zeros(n_splits)
AUC=np.zeros(n_splits)
forjinrange(n_splits):
recall, precision, auroc, acc=evaluate_model(data,pipeline,features,target)
Recall[j] =recallPrecision[j] =precisionAccuracy[j] =accAUC[j] =auroc

下面的柱状图显示了我们描述逻辑回归模型的四个统计数据的抽样分布估计数,数据集为1000个数据点;测试集的大小是300个数据点,因为我使用了0.3的分割比率。这里,我生成了100个样本,以节省时间和计算,我们可以看到柱状图看起来近似正常,然而,你可能想在自己的工作中生成1000或10000个样本,这取决于你想要的精确度。我们可以看到,逻辑回归模型做得很好,平均精度为0.84±0.02或84±2%。重要的是,所有这些指标都是由分布描述的,一旦我们估计了它,我们就可以计算任何我们喜欢的属性。

640.png

不确定性作为数据集大小的函数

为了说明数据集大小对不确定性的影响,我对7个数据集大小重复了上述过程:7000、5000、3000、1000、500、100、50。下面的图表显示了统计不确定性,表示为百分比,绘制为测试集大小的函数,记住,测试集大小是本实验中数据集大小的0.3倍。一旦测试集的规模下降到大约300点以下,由于抽样分布标准差的1/√n依赖性,所有统计量的不确定性开始迅速增加。这样做的结果是,对于较小的数据集,你不能真正了解你的模型的性能。

640.png

结论

在这篇文章中,我们介绍了一种快速而简单的方法,通过估计统计数据的抽样分布来计算机器学习模型的不确定性。为了简单起见,我讨论了二元分类器的情况,但这适用于任何模型和任何统计数据集,只需在许多测试集上评估你的模型,记录结果,并计算标准偏差。重要的是,这表明如果你的数据集只有几百个点,你很可能有很大的不确定性围绕着统计数据,这可能解释为什么你的新模型训练在一个小数据集表现不佳。好消息是,通过收集更多的数据,随着你的模型是活的,并定期再训练,你的不确定性将迅速下降,你将拥有一个更稳定的模型!

目录
相关文章
|
8月前
R语言分布滞后线性和非线性模型DLM和DLNM建模应用| 系列文章
R语言分布滞后线性和非线性模型DLM和DLNM建模应用| 系列文章
|
2月前
贝叶斯统计中常见先验分布选择方法总结
本文详细介绍了贝叶斯统计中三种常见的先验分布选择方法:经验贝叶斯方法、信息先验和无信息/弱信息先验。
110 3
贝叶斯统计中常见先验分布选择方法总结
|
1月前
|
机器学习/深度学习 算法 数据可视化
时间序列预测的不确定性区间估计:基于EnbPI的方法与应用研究
本文探讨了时间序列预测中不确定性量化的问题,特别是基于一致性预测理论的EnbPI方法。EnbPI通过集成学习和自举采样技术,解决了传统方法在处理非平稳时间序列数据时的局限性,提供了一种分布无关的预测区间构建方法,支持任意估计器的集成,并在推理阶段保持高效。实验结果显示,EnbPI在德国电力价格预测中表现出良好的覆盖率和适应性,尽管存在一定的计算成本。
49 0
|
3月前
|
算法
偏差与方差理论
偏差与方差理论
29 0
|
8月前
|
算法 Python
R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列
R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列
|
8月前
|
算法 vr&ar Python
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
|
8月前
|
存储 机器学习/深度学习 数据挖掘
R语言分布滞后线性和非线性模型(DLM和DLNM)建模
R语言分布滞后线性和非线性模型(DLM和DLNM)建模
|
8月前
|
数据挖掘
指数加权模型EWMA预测股市多变量波动率时间序列
指数加权模型EWMA预测股市多变量波动率时间序列
|
8月前
|
算法 测试技术 vr&ar
用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
|
8月前
|
存储
R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据
R语言分布滞后线性和非线性模型(DLMs和DLNMs)分析时间序列数据

热门文章

最新文章