进行图像增广(数据扩充)的15种功能总结和Python代码实现(一)

简介: 进行图像增广(数据扩充)的15种功能总结和Python代码实现

python代码可以自己扩充图像数据集。

640.png

无论我们喜欢Keras还是Pytorch,我们都可以使用丰富的资料库来有效地增广我们的图像。但是如果遇到特殊情况:

  • 我们的数据集结构复杂(例如3个输入图像和1-2个分段输出)。
  • 我们需要完全的自由透明度
  • 我们希望进行这些库未提供的扩充方法。

对于这些情况以及其他特殊情况,我们必须能够掌握我们自己的图像增广函数。而且,我每次都使用自己的函数。因此,在本文中,我将介绍并提供执行图像增广的功能。

640.png

我将使用朋友的照片来提醒我在加拿大度过的美好时光作为示例。希望您喜欢这张照片,因为这是您在本文中看到的唯一一张照片。

我将增广过程细分为一个实际的案例,将我们的函数与图像和目标图像一起使用。这将使您对将要描述的方法的灵活性有所了解:

  • 翻转
  • 裁剪
  • 过滤和锐化
  • 模糊
  • 旋转,平移,剪切,缩放
  • 剪下
  • 色彩
  • 亮度
  • 对比
  • 均匀和高斯噪声
  • 渐变
  • 镜头变形

本文的目的不是为了证明增广技术是如何设计的,而是理解它们的用法。

一些有用的函数

在开始之前,我想解释每种方法具有的通用结构。它实际上是一个要初始化的对象。该对象将以我们的样本作为参数调用,并将返回我们的扩充样本。这就是全部?是的,仅此而已!然后,让我们从增广功能之前的一些有用函数开始。

Resize

640.png

第一个有用的函数允许我们使用(宽度,高度)形状调整图像大小。这个使我们看到了所有其他的初始化方式。我们实例化一个对象,该对象的大小被参数化。在我们的例子中,所有样本(图像和目标)将以相同的尺寸返回。使用此类型的功能,我们可以轻松地以所需方式处理图像和目标。

class Resize(object):
   def __init__(self, output_size):
       self.output_size = output_size
   def __call__(self, X, Y):
       _X = cv2.resize(X, self.output_size)
       w, h = self.output_size
       c = Y.shape[-1]
       _Y = np.zeros((h, w, c))
       for i in range(Y.shape[-1]):
           _Y[..., i] = cv2.resize(Y[..., i], self.output_size)
       return _X, _Y

Clip

剪辑函数是一项非常有用的函数,尤其是当您需要从一种颜色空间切换到另一种颜色空间或在0和1或0和255之间重置图像时。

640.png

默认情况下,如果仅指定一个阈值,则最小阈值为0。

class Clip(object):
   def __init__(self, mini, maxi=None):
       if maxi is None:
           self.mini, self.maxi = 0, mini
       else:
           self.mini, self.maxi = mini, maxi
   def __call__(self, X, Y):
       mini_mask = np.where(X < self.mini)
       maxi_mask = np.where(X > self.maxi)
       X[mini_mask] = self.mini
       X[maxi_mask] = self.maxi
       return X, Y

Normalize or Standardize

在传递模型中的输入之前,我们通常希望对数据进行标准化规范化。当然,这些操作可以在特定的上完成。

640.png

默认情况下,对整个图像执行标准化和规范化。

class Normalize(object):
   def __init__(self, axis=None):
       self.axis = axis
   def __call__(self, X, Y):
       mini = np.min(X, self.axis)
       maxi = np.max(X, self.axis)
       X = (X - mini) / (maxi - mini)
       return X, Y
class Standardize(object):
   def __init__(self, axis=None):
       self.axis = axis
   def __call__(self, X, Y):
       mean =  np.mean(X, self.axis)
       std = np.std(X, self.axis)
       X = (X - mean) / std
       return X, Y

ToTensor

最后,如果您使用的是Pytorch,则需要将图像转换为Torch.Tensor。唯一需要注意的是,使用Pytorch,我们的图像维度中首先是通道,而不是最后是通道。最后,我们还可以选择张量的输出类型

class ToTensor(object):
   def __init__(self, X_type=None, Y_type=None):
       # must bu torch types
       self.X_type = X_type
       self.Y_type = Y_type
   def __call__(self, X, Y):
       # swap color axis because
       # numpy img_shape: H x W x C
       # torch img_shape: C X H X W
       X = X.transpose((2, 0, 1))
       Y = Y.transpose((2, 0, 1))
       # convert to tensor
       X = torch.from_numpy(X)
       Y = torch.from_numpy(Y)
       if self.X_type is not None:
           X = X.type(self.X_type)
       if self.Y_type is not None:
           Y = Y.type(self.Y_type)
       return X, Y

怎么使用?

我们要做的就是定义我们要在样本中进行的转换的列表,仅此而已。之后我们什么也别碰。请注意,转换顺序很重要。而且由你决定

X, Y = get_next_sample()
   for t in transform: # data augmentation
       X, Y = t(X, Y)
   pred = model.predict(X, Y)

现在,我们可以深入研究本文的目的,并查看图像增广技术。

旋转

640.gif

第一个,也是最简单的一个,包括在图像的水平垂直轴上随机执行翻转。换句话说,执行垂直翻转的机会为50/100,执行水平翻转的机会为50/100。

class Flip(object):
   def __call__(self, X, Y):
       for axis in [0, 1]:
           if np.random.rand(1) < 0.5:
               X = np.flip(X, axis)
               Y = np.flip(Y, axis)
       return X, Y

裁剪

要进行图像增广,通常会随机裁剪图像。换句话说,我们在随机区域上裁剪了一部分随机大小的图像。

640.gif

可以从尺寸的比例(高度,宽度)中选择裁剪图像的尺寸。如果未指定裁剪的比例最大大小,则默认情况下,我们将认为它是图像的大小。

class Crop(object):
   def __init__(self, min_size_ratio, max_size_ratio=(1, 1)):
       self.min_size_ratio = np.array(list(min_size_ratio))
       self.max_size_ratio = np.array(list(max_size_ratio))
   def __call__(self, X, Y):
       size = np.array(X.shape[:2])
       mini = self.min_size_ratio * size
       maxi = self.max_size_ratio * size
       # random size
       h = np.random.randint(mini[0], maxi[0])
       w = np.random.randint(mini[1], maxi[1])
       # random place
       shift_h = np.random.randint(0, size[0] - h)
       shift_w = np.random.randint(0, size[1] - w)
       X = X[shift_h:shift_h+h, shift_w:shift_w+w]
       Y = Y[shift_h:shift_h+h, shift_w:shift_w+w]
       return X, Y
目录
相关文章
|
22天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
31 6
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
112 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
15天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
57 8
|
20天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
21天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
44 6
|
21天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
7月前
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
3月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
2月前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
121 5