Python:利用蒙特卡洛方法模拟验证概率分布

简介: 这个题目可以使用数学方法,将其答案显式地写出来,但是验证解出来的答案是否正确,就可以使用蒙特卡洛方法了。

利用 MonteCarlo 模拟验证概率分布

有这样一道题目:

已知两个独立随机变量 $x,y$,随机变量 $x$ 服从几何分布 $\mathrm{Geom}(p)$,$y$ 服从区间 $[0,1]$ 上的均匀分布 $\mathrm{U}(0,1)$,求新的随机变量 $z=xy$ 的概率分布。

这个题目可以使用数学方法,将其答案显式地写出来,但是验证解出来的答案是否正确,就可以使用蒙特卡洛方法了。我们可以先写出自己的答案,然后编程看看使用蒙特卡洛方法模拟出来的结果与我们自己计算出来的结果是否一致。

1/ 使用数学方法解题

第一步我们先用高数的知识解题,这一步如果看不懂,可以跳过,直接看第二步的编程模拟部分,我会把结果写出来,重要的是学会蒙特卡洛方法的思路,而不是学会如何解这道题。

首先,由题设知:

$$ F_Y(y)=\begin{cases}0, & y<0 \\y, & 0 <1 \\1, & y>1 \end{cases} \\ P(x=k)=(1-p)^{k-1}p $$

故:

$$ \begin{aligned} F_Z(z) & = P\{Z\le z\}=P\{XY\le z\} \\ & = P\{Y\le z \}\cdot P\{X=1 \}+P\{2Y\le z \}\cdot P\{X=2 \}+P\{3Y\le z \}\cdot P\{X=3 \}+\cdots+P\{kY\le z \}\cdot P\{X=k \} \\ & = P\{Y\le z \}\cdot p+P\{Y\le \frac{z}{2} \}\cdot (1-p)p+\cdots+P\{Y\le \frac{z}{k} \}\cdot (1-p)^{k-1}p \end{aligned} $$

当 $z<0$ 时,$F_Z(z)=0$

当 $0<z\le 1$ 时,$F_Z(z)=zp+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p$

当 $1<z\le 2$ 时,$F_Z(z)=p+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p$

$\vdots$

综上所述:

$$ F_Z(z)=\begin{cases} 0, & z<0 \\ zp+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p, & 0

2/ 使用蒙特卡洛方法验证

算出来的答案还不知道是否正确,我们可以使用蒙特卡洛方法来验证。其基本思想就是通过生成大量的数据,模拟分布的情况,在数据量足够大的情况,可以较好的把问题模拟出来。

代码在文章的末尾会附上。

首先,根据算出来的答案,可以整理成为:

$$ F_z(z)=p\sum_{m=1}^{j}(1-p)^{m-1}+zp\sum_{k=j+1}^{\infty}\frac{1}{k}(1-p)^{k-1}, j<z\le j+1, j=0,1,2,3,... $$

在代码实现上,不能将 $k$ 一直计算到无穷大,由于当 $k$ 大于一定的数时,对于整个函数的贡献很小,故设定了一个最大的 $k$ 值 $k_{max}=200$。

根据蒙特卡洛方法,我们利用 Python 的 NumPy 库,产生几何分布和在 $[0, 1]$ 上的均匀分布随机数,即生成大量的 $X$ 和 $Y$,然后让 $Z=XY$,通过统计,计算在不同的区间上所包含的数据点,画出直方图:

MonteCarlo 模拟直方图

图 1. 利用 MonteCarlo 模拟出的直方图,其中几何分布的 $p=0.1$,所选取的数据点数为 $20000$ 个,每个区间的宽度为 $1$。由于当 $z\gt 40$ 时出现的概率很低,故将区间的最大值设为 $40$。

概率分布函数对 $z$ 求导,得到:

$$ f_z(z)=p\sum_{k=j+1}^{\infty}\frac{1}{k}(1-p)^{k-1}, j<z\le j+1, j=0,1,2,3,... $$

可以知道概率密度函数在不同的区间上有不同的取值,同一区间范围取值相同,即在概率分布函数上看,应该是会随着区间的不同,有不一样的斜率,并且曲线斜率在递减。

MonteCarlo 模拟 PDF 对比图

图 2. MonteCarlo 直方图(蓝色)和概率密度函数(橙色)对比图。从左到右依次为选择 200、2000、20000 个数据点做出的曲线。

由题目计算出来的函数为概率分布函数,将直方图每个区间的进行 np.cumsum() 函数累加,就可以算出蒙特卡洛模拟的概率分布:

MonteCarlo 模拟概率分布对比图

图 3. MonteCarlo (蓝色)和计算出的函数(橙色)对比图。从左到右依次为选择 200、2000、20000 个数据点做出的曲线,蓝色曲线随着数据点选取数量的增加,越接近橙色曲线。

附上模拟的代码:

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(222)

# 把计算得到的函数写成一个函数
def distribution_z(z, p, max_k = 200):
    import math
    j = int(math.floor(z))
    A = 0
    for m in range(1, j + 1):
        A += (1 - p) ** (m - 1)
    A *= p
    
    B = 0
    for k in range(j + 1, max_k + 1):
        a = (1 - p) ** (k - 1)
        a /= k
        B += a
    B *= z * p

    return A + B

def pdf_z(z, p, max_k = 200):
    import math
    j = int(math.floor(z))
    B = 0
    for k in range(j + 1, max_k + 1):
        a = (1 - p) ** (k - 1)
        a /= k
        B += a
    return B * p

p = 0.1
# 选取数据点,点越多越精确
dataPoints = 20000

Unit = np.random.rand(dataPoints)
Geom = np.random.geometric(p, dataPoints)
distri_of_Monte = Geom * Unit

# 概率密度函数 PDF
plt.hist(distri_of_Monte, bins = 40, range = (0, 40))
points_of_z = np.arange(0, 41, 0.01)
pdf_of_z = np.array([pdf_z(zi, p) for zi in points_of_z]) * dataPoints
plt.plot(points_of_z, pdf_of_z)
# print(pdf_of_z)
plt.show()

hist, bin_edges = np.histogram(distri_of_Monte, bins = 40, range = (0, 40))

# 概率分布函数 CDF
hist_list = np.cumsum(hist) / dataPoints

plt.plot(bin_edges[1:], hist_list)

points_of_z = np.arange(1, 41, 0.1)
distri_of_z = [distribution_z(zi, p) for zi in points_of_z]

plt.plot(points_of_z, distri_of_z)

plt.show()
目录
相关文章
|
1月前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
4月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
248 3
|
2月前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
112 21
|
2月前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
64 10
|
1月前
|
SQL 关系型数据库 MySQL
Python中使用MySQL模糊查询的方法
本文介绍了两种使用Python进行MySQL模糊查询的方法:一是使用`pymysql`库,二是使用`mysql-connector-python`库。通过这两种方法,可以连接MySQL数据库并执行模糊查询。具体步骤包括安装库、配置数据库连接参数、编写SQL查询语句以及处理查询结果。文中详细展示了代码示例,并提供了注意事项,如替换数据库连接信息、正确使用通配符和关闭数据库连接等。确保在实际应用中注意SQL注入风险,使用参数化查询以保障安全性。
|
3月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
173 15
|
3月前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
4月前
|
算法 决策智能 Python
Python中解决TSP的方法
旅行商问题(TSP)是寻找最短路径,使旅行商能访问每个城市一次并返回起点的经典优化问题。本文介绍使用Python的`ortools`库解决TSP的方法,通过定义城市间的距离矩阵,调用库函数计算最优路径,并打印结果。此方法适用于小规模问题,对于大规模或特定需求,需深入了解算法原理及定制策略。
103 15
|
3月前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
581 5
|
4月前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
349 4