Python:利用蒙特卡洛方法模拟验证概率分布

简介: 这个题目可以使用数学方法,将其答案显式地写出来,但是验证解出来的答案是否正确,就可以使用蒙特卡洛方法了。

利用 MonteCarlo 模拟验证概率分布

有这样一道题目:

已知两个独立随机变量 $x,y$,随机变量 $x$ 服从几何分布 $\mathrm{Geom}(p)$,$y$ 服从区间 $[0,1]$ 上的均匀分布 $\mathrm{U}(0,1)$,求新的随机变量 $z=xy$ 的概率分布。

这个题目可以使用数学方法,将其答案显式地写出来,但是验证解出来的答案是否正确,就可以使用蒙特卡洛方法了。我们可以先写出自己的答案,然后编程看看使用蒙特卡洛方法模拟出来的结果与我们自己计算出来的结果是否一致。

1/ 使用数学方法解题

第一步我们先用高数的知识解题,这一步如果看不懂,可以跳过,直接看第二步的编程模拟部分,我会把结果写出来,重要的是学会蒙特卡洛方法的思路,而不是学会如何解这道题。

首先,由题设知:

$$ F_Y(y)=\begin{cases}0, & y<0 \\y, & 0 <1 \\1, & y>1 \end{cases} \\ P(x=k)=(1-p)^{k-1}p $$

故:

$$ \begin{aligned} F_Z(z) & = P\{Z\le z\}=P\{XY\le z\} \\ & = P\{Y\le z \}\cdot P\{X=1 \}+P\{2Y\le z \}\cdot P\{X=2 \}+P\{3Y\le z \}\cdot P\{X=3 \}+\cdots+P\{kY\le z \}\cdot P\{X=k \} \\ & = P\{Y\le z \}\cdot p+P\{Y\le \frac{z}{2} \}\cdot (1-p)p+\cdots+P\{Y\le \frac{z}{k} \}\cdot (1-p)^{k-1}p \end{aligned} $$

当 $z<0$ 时,$F_Z(z)=0$

当 $0<z\le 1$ 时,$F_Z(z)=zp+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p$

当 $1<z\le 2$ 时,$F_Z(z)=p+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p$

$\vdots$

综上所述:

$$ F_Z(z)=\begin{cases} 0, & z<0 \\ zp+\frac{1}{2}z(1-p)p+\frac{1}{3}z(1-p)^2p+\cdots+\frac{1}{k}z(1-p)^{k-1}p, & 0

2/ 使用蒙特卡洛方法验证

算出来的答案还不知道是否正确,我们可以使用蒙特卡洛方法来验证。其基本思想就是通过生成大量的数据,模拟分布的情况,在数据量足够大的情况,可以较好的把问题模拟出来。

代码在文章的末尾会附上。

首先,根据算出来的答案,可以整理成为:

$$ F_z(z)=p\sum_{m=1}^{j}(1-p)^{m-1}+zp\sum_{k=j+1}^{\infty}\frac{1}{k}(1-p)^{k-1}, j<z\le j+1, j=0,1,2,3,... $$

在代码实现上,不能将 $k$ 一直计算到无穷大,由于当 $k$ 大于一定的数时,对于整个函数的贡献很小,故设定了一个最大的 $k$ 值 $k_{max}=200$。

根据蒙特卡洛方法,我们利用 Python 的 NumPy 库,产生几何分布和在 $[0, 1]$ 上的均匀分布随机数,即生成大量的 $X$ 和 $Y$,然后让 $Z=XY$,通过统计,计算在不同的区间上所包含的数据点,画出直方图:

MonteCarlo 模拟直方图

图 1. 利用 MonteCarlo 模拟出的直方图,其中几何分布的 $p=0.1$,所选取的数据点数为 $20000$ 个,每个区间的宽度为 $1$。由于当 $z\gt 40$ 时出现的概率很低,故将区间的最大值设为 $40$。

概率分布函数对 $z$ 求导,得到:

$$ f_z(z)=p\sum_{k=j+1}^{\infty}\frac{1}{k}(1-p)^{k-1}, j<z\le j+1, j=0,1,2,3,... $$

可以知道概率密度函数在不同的区间上有不同的取值,同一区间范围取值相同,即在概率分布函数上看,应该是会随着区间的不同,有不一样的斜率,并且曲线斜率在递减。

MonteCarlo 模拟 PDF 对比图

图 2. MonteCarlo 直方图(蓝色)和概率密度函数(橙色)对比图。从左到右依次为选择 200、2000、20000 个数据点做出的曲线。

由题目计算出来的函数为概率分布函数,将直方图每个区间的进行 np.cumsum() 函数累加,就可以算出蒙特卡洛模拟的概率分布:

MonteCarlo 模拟概率分布对比图

图 3. MonteCarlo (蓝色)和计算出的函数(橙色)对比图。从左到右依次为选择 200、2000、20000 个数据点做出的曲线,蓝色曲线随着数据点选取数量的增加,越接近橙色曲线。

附上模拟的代码:

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(222)

# 把计算得到的函数写成一个函数
def distribution_z(z, p, max_k = 200):
    import math
    j = int(math.floor(z))
    A = 0
    for m in range(1, j + 1):
        A += (1 - p) ** (m - 1)
    A *= p
    
    B = 0
    for k in range(j + 1, max_k + 1):
        a = (1 - p) ** (k - 1)
        a /= k
        B += a
    B *= z * p

    return A + B

def pdf_z(z, p, max_k = 200):
    import math
    j = int(math.floor(z))
    B = 0
    for k in range(j + 1, max_k + 1):
        a = (1 - p) ** (k - 1)
        a /= k
        B += a
    return B * p

p = 0.1
# 选取数据点,点越多越精确
dataPoints = 20000

Unit = np.random.rand(dataPoints)
Geom = np.random.geometric(p, dataPoints)
distri_of_Monte = Geom * Unit

# 概率密度函数 PDF
plt.hist(distri_of_Monte, bins = 40, range = (0, 40))
points_of_z = np.arange(0, 41, 0.01)
pdf_of_z = np.array([pdf_z(zi, p) for zi in points_of_z]) * dataPoints
plt.plot(points_of_z, pdf_of_z)
# print(pdf_of_z)
plt.show()

hist, bin_edges = np.histogram(distri_of_Monte, bins = 40, range = (0, 40))

# 概率分布函数 CDF
hist_list = np.cumsum(hist) / dataPoints

plt.plot(bin_edges[1:], hist_list)

points_of_z = np.arange(1, 41, 0.1)
distri_of_z = [distribution_z(zi, p) for zi in points_of_z]

plt.plot(points_of_z, distri_of_z)

plt.show()
目录
相关文章
|
13天前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
114 1
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
|
2月前
|
调度 Python
微电网两阶段鲁棒优化经济调度方法(Python代码实现)
微电网两阶段鲁棒优化经济调度方法(Python代码实现)
|
2月前
|
传感器 大数据 API
Python数字限制在指定范围内:方法与实践
在Python编程中,限制数字范围是常见需求,如游戏属性控制、金融计算和数据过滤等场景。本文介绍了五种主流方法:基础条件判断、数学运算、装饰器模式、类封装及NumPy数组处理,分别适用于不同复杂度和性能要求的场景。每种方法均有示例代码和适用情况说明,帮助开发者根据实际需求选择最优方案。
82 0
|
2月前
|
Python
Python字符串center()方法详解 - 实现字符串居中对齐的完整指南
Python的`center()`方法用于将字符串居中,并通过指定宽度和填充字符美化输出格式,常用于文本对齐、标题及表格设计。
|
5天前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
67 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
17天前
|
算法 调度 决策智能
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
|
2月前
|
机器学习/深度学习 数据采集 算法
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
132 4
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
|
3月前
|
数据管理 开发工具 索引
在Python中借助Everything工具实现高效文件搜索的方法
使用上述方法,你就能在Python中利用Everything的强大搜索能力实现快速的文件搜索,这对于需要在大量文件中进行快速查找的场景尤其有用。此外,利用Python脚本可以灵活地将这一功能集成到更复杂的应用程序中,增强了自动化处理和数据管理的能力。
194 0

热门文章

最新文章

推荐镜像

更多