使用Python线性回归预测Steam游戏的打折的幅度(二)

简介: 使用Python线性回归预测Steam游戏的打折的幅度(二)

第一次尝试:基本模型,删除评论少于30条的游戏

# Setting a floor limit of 30
df1 = df1[df1.Reviews > 30]
Best Model: Lasso
Score: 0.419 +- 0.073

第二次:“Reviews” & “OriginalPrice” 进行对数变换

df2.Reviews = np.log(df2.Reviews)
df2.OriginalPrice = df2.OriginalPrice.astype(float)
df2.OriginalPrice = np.log(df2.OriginalPrice)
Best Model: Lasso
Score: 0.437 +- 0.104

第三次:将mantag进行onehot编码

image.png

# Checking to make sure the dummies are separated correctly
pd.get_dummies(df3.Main_Tag).head(5)
# Adding dummy categories into the dataframe
df3 = pd.concat([df3, pd.get_dummies(df3.Main_Tag).astype(int)], axis = 1)
# Drop original string based column to avoid conflict in linear regression
df3.drop('Main_Tag', axis = 1, inplace=True)
Best Model: Lasso
Score: 0.330 +- 0.073

第四次:尝试把所有非数值数据都进行onehot编码

image.png

# we can get dummies for each tag listed separated by comma
split_tag = df4.All_Tags.astype(str).str.strip('[]').str.get_dummies(', ')
# Now merge the dummies into the data frame to start EDA
df4= pd.concat([df4, split_tag], axis=1)
# Remove any column that only has value of 0 as precaution
df4 = df4.loc[:, (df4 != 0).any(axis=0)]
Best Model: Lasso
Score: 0.359 +- 0.080

第五次:整合2和4次操作

# Dummy all top 5 tags
split_tag = df.All_Tags.astype(str).str.strip('[]').str.get_dummies(', ')
df5= pd.concat([df5, split_tag], axis=1)
# Log transform Review due to skewed pairplot graphs
df5['Log_Review'] = np.log(df5['Reviews'])
Best Model: Lasso
Score: 0.359 +- 0.080

看到结果后,发现与第4次得分完全相同,这意味着“评论”对折扣百分比绝对没有影响。所以这一步操作可以不做,对结果没有任何影响

第六次:对将“评论”和“发布后的天数”进行特殊处理

image.png

# Binning reviews (which is highly correlated with popularity) based on the above 75 percentile and 25 percentile
df6.loc[df6['Reviews'] < 33, 'low_pop'] = 1
df6.loc[(df6.Reviews >= 33) & (df6.Reviews < 381), 'mid_pop'] = 1
df6.loc[df6['Reviews'] >= 381, 'high_pop'] = 1
# Binning Days_Since_Release based on the above 75 percentile and 25 percentile
df6.loc[df6['Days_Since_Release'] < 418, 'new_game'] = 1
df6.loc[(df6.Days_Since_Release >= 418) & (df6.Days_Since_Release < 1716), 'established_game'] = 1
df6.loc[df6['Days_Since_Release'] >= 1716, 'old_game'] = 1
# Fill all the NaN's
df6.fillna(0, inplace = True)
# Drop the old columns to avoid multicolinearity
df6.drop(['Reviews', 'Days_Since_Release'], axis=1, inplace = True)

这两列被分成三个特征。

Best Model: Ridge
Score: 0.273 +- 0.044


目录
相关文章
|
3月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
11月前
|
人工智能 Python
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
478 7
|
5月前
|
存储 算法 区块链
从零实现Python扫雷游戏:完整开发指南与深度解析
扫雷作为Windows经典游戏,承载了许多人的童年回忆。本文将详细介绍如何使用Python和Tkinter库从零开始构建一个功能完整的扫雷游戏,涵盖游戏设计、算法实现和界面开发的全过程。
491 1
|
6月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
853 1
|
6月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
530 0
|
11月前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
582 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
322 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
349 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
279 103

推荐镜像

更多