Mysql索引降维 优化查询 提高效率

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 数据的选择度越大,则维度越大。 降维,按我个人的理解是:在大量的数据中,一层一层地筛选过滤,维度也会逐渐减低。 点线面中,共有黑红两种颜色。 目标:筛选出所有红色的点 步骤:选出所有带有红色点的面 –> 选出所有带有红色点的线 –> 在线上选出所有红色点

写在前面


在前一篇文章中,我们已经介绍了索引、索引的优化规则等等 原文链接:mysql索引优化 在其中我们有引申出组合索引,多个单字段索引冲突两个知识点。 本文章主要是与后者有关联。 在原文中,我们使用了下面的例子


现在有这样子的数据量:
100W条数据 user_name=’我是用户名’
100条数据 user_phone=’110′
5条数据 user_name=’我是用户名’ and user_phone=’110′
假设有这样子一条语句:
select * from test where user_name = '我是用户名' and user_phone='110'
有两个字段都有索引可用,mysql会选择一个使用。这是属于mysql的内部处理判断
正常情况下,如果用user_phone索引生效的话,会很快得到结果(先筛选出100条 再筛选)
如果user_name生效,则要先筛选100W条数据,再筛选user_phone
mysql内部的错误判断可能使得user_name索引生效,此时效率就会很低了,我们可以强制使用某个索引


指定使用索引的意义


从以上例子中,我们可以思考并归纳。能提升效率的核心是:在一开始就尽可能地筛选出准确的数据。 所以当我们发现mysql可能处理出错的情况时,可以手动指定使用更优的索引来提高查询效率。 这个可以称为索引降维


降维


数据的选择度越大,则维度越大。 降维,按我个人的理解是:在大量的数据中,一层一层地筛选过滤,维度也会逐渐减低。 点线面中,共有黑红两种颜色。 目标:筛选出所有红色的点 步骤:选出所有带有红色点的面 –> 选出所有带有红色点的线 –> 在线上选出所有红色点


索引降维


在老旧的mysql版本中,where的条件顺序还会很大影响执行结果。 比如在上面的举例中,用条件语句来举例,而不是索引


select * from test where user_name = '我是用户名' and user_phone='110'
select * from test where user_phone='110' and user_name = '我是用户名'


这两个语句会出现上面索引冲突时 mysql没有使用更优索引的情况一样,第一条语句会先筛选出100W条数据,再筛选user_phone=110


然而在后续的mysql发展中,sql构造器优化器会自动帮我们排序执行,这种问题已不太需要人工去调整。


但是当我们建立组合索引的时候,则会根据我们的选择顺序来构建了。 比如有这么一个索引


index user_info (user_name, user_phone)


我们可以用大小分类的情况举例看一下


└名字一
└──user_phone 110
└──user_phone 120
└──user_phone 119
└名字二
└──user_phone 110
└──user_phone 120
└──user_phone 119
└名字三
└──user_phone 110
└──user_phone 120
└──user_phone 119


而如果我们把顺序调整成(user_phone, user_name) 那么就可以把组合索引看成


└─110
└──user_name 名字一
└──user_name 名字二
└──user_name 名字三
└─120
└──user_name 名字一
└──user_name 名字二
└──user_name 名字三
└─119
└──user_name 名字一
└──user_name 名字二
└──user_name 名字三


两种情况,都会在某些场景下有自己的优势,所以我们就需要结合自己的业务数据来进行选择啦。 用我们的老例子来说: 以名字来区分,第一次筛选出现100W条数据,然后再筛选手机号。 以手机号来区分,第一次筛选出现100条数据,然后再筛选用户名。 同样的情况还出现在分表中,用什么条件来分表也是极其重要的。 分表中,如果我们以订单的年份作为分表条件,想要搜索ID=3的会员在2019年某个月份日期的订单,那么我们需要先搜索2019年的表(一年的订单假设有100W条记录),然后再筛选用户ID和其他月份等条件。 如果我们以订单的年份+月份作为分表条件(只是举例,有很多分表条件可以决定),那么初步筛选的数据就会少了很多了,后续的筛选步骤也会更快完成。


总结


在分表、组合索引等等场景下,我们可以结合业务数据,进行降维的顺序思考,尽可能地在一开始就筛选出比较准确的数据,在后续的筛选中则只需要遍历检查很少的一部分数据,已达到提高查询效率的效果。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
6天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
55 9
|
10天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
51 18
|
3天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
27 8
|
6天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
44 11
|
9天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
17 7
|
8天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
32 5
|
9天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
38 6
|
14天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
92 15
|
7天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
14天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。