46. 盘点那些必问的数据结构算法题之快速排序算法

简介: 46. 盘点那些必问的数据结构算法题之快速排序算法

46. 盘点那些必问的数据结构算法题之快速排序算法


0 概述

快速排序也是基于分治模式,类似归并排序那样,不同的是快速排序划分最后不需要merge。对一个数组 A[p…r] 进行快速排序分为三个步骤:

划分:数组 A[p…r] 被划分为两个子数组 A[p…q-1] 和 A[q+1…r],使得 A[p…q-1] 中每个元素都小于等于 A[q],而 A[q+1…r] 每个元素都大于 A[q]。划分流程见下图。

解决:通过递归调用快速排序,对子数组分别排序即可。

合并:因为两个子数组都已经排好序了,且已经有大小关系了,不需要做任何操作。快速排序算法不算复杂的算法,但是实际写代码的时候却是最容易出错的代码,写的不对就容易死循环或者划分错误。

本文代码见

https://github.com/shishujuan/dsalg/tree/master/code/alg/sort

1 朴素的快速排序

这个朴素的快速排序有个缺陷就是在一些极端情况如所有元素都相等时(或者元素本身有序,如 a[] = {1,2,3,4,5}等),朴素的快速算法时间复杂度为 O(N^2),而如果能够平衡划分数组则时间复杂度为 O(NlgN)。

/**
 * 快速排序-朴素版本
 */
void quickSort(int a[], int l, int u)
{
    if (l >= u) return;
    int q = partition(a, l, u);
    quickSort(a, l, q-1);
    quickSort(a, q+1, u);
}
/**
 * 快速排序-划分函数
 */
int partition(int a[], int l, int u)
{
    int i, q=l;
    for (i = l+1; i <= u; i++) {
        if (a[i] < a[l])
            swapInt(a, i, ++q);
    }
    swapInt(a, l, q);
    return q;
}

2 改进-双向划分的快速排序

一种改进方法就是采用双向划分,使用两个变量 i 和 j,i 从左往右扫描,移过小元素,遇到大元素停止;j 从右往左扫描,移过大元素,遇到小元素停止。然后测试i和j是否交叉,如果交叉则停止,否则交换 i 与 j 对应的元素值。

*注意,如果数组中有相同的元素,则遇到相同的元素时,我们停止扫描,并交换 i 和 j 的元素值。*虽然这样交换次数增加了,但是却将所有元素相同的最坏情况由 O(N^2) 变成了差不多 O(NlgN) 的情况。

比如数组 A={2,2,2,2,2}, 则使用朴素快速排序方法,每次都是划分 n 个元素为 1 个和 n-1 个,时间复杂度为 O(N^2),而使用双向划分后,第一次划分的位置是 2,基本可以平衡划分两部分。

代码如下:

/**
 * 快速排序-双向划分函数
 */
int partitionLR(int a[], int l, int u, int pivot)
{
    int i = l;
    int j = u+1;
    while (1) {
        do {
            i++;
        } while (a[i] < pivot && i <= u); //注意i<=u这个判断条件,不能越界。
        do {
            j--;
        } while (a[j] > pivot);
        if (i > j) break;
        swapInt(a, i, j);
    }
    // 注意这里是交换l和j,而不是l和i,因为i与j交叉后,a[i...u]都大于等于枢纽元t,
    // 而枢纽元又在最左边,所以不能与i交换。只能与j交换。
    swapInt(a, l, j);
    return j;
}
/**
 * 快速排序-双向划分法
 */
void quickSortLR(int a[], int l, int u)
{
    if (l >= u) return;
    int pivot = a[l];
    int q = partitionLR(a, l, u, pivot);
    quickSortLR(a, l, q-1);
    quickSortLR(a, q+1, u);
}

虽然双向划分解决了所有元素相同的问题,但是对于一个已经排好序的数组还是会达到 O(N^2) 的复杂度。此外,双向划分还要注意的一点是代码中循环的写法,如果写成 while(a[i]<t) {i++;} 等形式,则当左右划分的两个值都等于枢纽元时,会导致死循环。

3 继续改进—随机法和三数取中法取枢纽元

为了解决上述问题,可以进一步改进,通过随机选取枢纽元或三数取中方式来获取枢纽元,然后进行双向划分。三数取中指的就是从数组A[l… u]中选择左中右三个值进行排序,并使用中值作为枢纽元。

如数组 A[] = {1, 3, 5, 2, 4},则我们对 A[0]、A[2]、A[4] 进行排序,选择中值 A4 作为枢纽元,并将其交换到 a[l] ,最后数组变成 A[] = {4 3 5 2 1},然后跟之前一样双向排序即可。

/**
 * 随机选择枢纽元
 */
int pivotRandom(int a[], int l, int u)
{
    int rand = randInt(l, u);
    swapInt(a, l, rand); // 交换枢纽元到位置l
    return a[l];
}
/**
 * 三数取中选择枢纽元
 */
int pivotMedian3(int a[], int l, int u)
{
     int m = l + (u-l)/2;
     /*
      * 三数排序
      */
     if( a[l] > a[m] )
        swapInt(a, l, m);
     if( a[l] > a[u] )
        swapInt(a, l, u);
     if( a[m] > a[u] )
        swapInt(a, m, u);
     /* assert: a[l] <= a[m] <= a[u] */
     swapInt(a, m, l); // 交换枢纽元到位置l
     return a[l];
}

此外,在数据基本有序的情况下,使用插入排序可以得到很好的性能,而且在排序很小的子数组时,插入排序比快速排序更快,可以在数组比较小时选用插入排序,而大数组才用快速排序。

4 非递归写快速排序

非递归写快速排序着实比较少见,不过练练手总是好的。需要用到栈,注意压栈的顺序。

代码如下:

/**
 * 快速排序-非递归版本
 */
void quickSortIter(int a[], int n)
{
    Stack *stack = stackNew(n);
    int l = 0, u = n-1;
    int p = partition(a, l, u);
    if (p-1 > l) { //左半部分两个边界值入栈
        push(stack, p-1); 
        push(stack, l);
    }
    if (p+1 < u) { //右半部分两个边界值入栈
        push(stack, u);
        push(stack, p+1);
    }
    while (!IS_EMPTY(stack)) { //栈不为空,则循环划分过程
        l = pop(stack);
        u = pop(stack);
        p = partition(a, l, u);
        if (p-1 > l) {
            push(stack, p-1);
            push(stack, l);
        }
        if (p+1 < u) {
            push(stack, u);
            push(stack, p+1);
        }
    }
}

参考资料

《数据结构和算法-C语言实现》

《算法导论》

目录
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
119 4
|
2月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
62 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
101 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
12天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
49 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
112 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20