万事开头难,早就想做这一套教程
最近刚出了一趟长差,终于忙一段落
数据预处理是机器学习中最基础也最麻烦的一部分内容
在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定
在之后的每个算法实现和案例练手过程中,这一步都必不可少
同学们也不要嫌麻烦,动起手来吧
基础比较好的同学也可以温故知新,再练习一下哈
闲言少叙,下面我们六步完成数据预处理
其实我感觉这里少了一步:观察数据
这是十组国籍、年龄、收入、是否已购买的数据
有分类数据,有数值型数据,还有一些缺失值
看起来是一个分类预测问题
根据国籍、年龄、收入来预测是够会购买
OK,有了大体的认识,开始表演。
Step 1:导入库
import numpy as np import pandas as pd
Step 2:导入数据集
dataset = pd.read_csv('Data.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 3].values print("X") print(X) print("Y") print(Y)
这一步的目的是将自变量和因变量拆成一个矩阵和一个向量。
结果如下
X [['France' 44.0 72000.0 'No'] ['Spain' 27.0 48000.0 'Yes'] ['Germany' 30.0 54000.0 'No'] ['Spain' 38.0 61000.0 'No'] ['Germany' 40.0 nan 'Yes'] ['France' 35.0 58000.0 'Yes'] ['Spain' nan 52000.0 'No'] ['France' 48.0 79000.0 'Yes'] ['Germany' 50.0 83000.0 'No'] ['France' 37.0 67000.0 'Yes']] Y ['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']
Step 3:处理缺失数据
from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0) imputer = imputer.fit(X[ : , 1:3]) X[ : , 1:3] = imputer.transform(X[ : , 1:3]) print("---------------------") print("Step 3: Handling the missing data") print("step2") print("X") print(X)
本例中我们用的是均值替代法填充缺失值
运行结果如下
X [['France' 44.0 72000.0] ['Spain' 27.0 48000.0] ['Germany' 30.0 54000.0] ['Spain' 38.0 61000.0] ['Germany' 40.0 63777.77777777778] ['France' 35.0 58000.0] ['Spain' 38.77777777777778 52000.0] ['France' 48.0 79000.0] ['Germany' 50.0 83000.0] ['France' 37.0 67000.0]]
Step 4:把分类数据转换为数字
from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0]) #Creating a dummy variable onehotencoder = OneHotEncoder(categorical_features = [0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_Y = LabelEncoder() Y = labelencoder_Y.fit_transform(Y) print("X") print(X) print("Y") print(Y)
LabelEncoder用法请移步
X [[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01 7.20000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01 4.80000000e+04] [0.00000000e+00 1.00000000e+00 0.00000000e+00 3.00000000e+01 5.40000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01 6.10000000e+04] [0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01 6.37777778e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01 5.80000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01 5.20000000e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01 7.90000000e+04] [0.00000000e+00 1.00000000e+00 0.00000000e+00 5.00000000e+01 8.30000000e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01 6.70000000e+04]] Y [0 1 0 0 1 1 0 1 0 1]
Step 5:将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0) print("X_train") print(X_train) print("X_test") print(X_test) print("Y_train") print(Y_train) print("Y_test") print(Y_test)
train_test_split用法移步
结果如下
X_train [[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01 6.37777778e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01 6.70000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01 4.80000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01 5.20000000e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01 7.90000000e+04] [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01 6.10000000e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01 7.20000000e+04] [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01 5.80000000e+04]] X_test [[0.0e+00 1.0e+00 0.0e+00 3.0e+01 5.4e+04] [0.0e+00 1.0e+00 0.0e+00 5.0e+01 8.3e+04]] Y_train [1 1 1 0 1 0 0 1] Y_test [0 0]
Step 6:特征缩放
from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) print("---------------------") print("Step 6: Feature Scaling") print("X_train") print(X_train) print("X_test") print(X_test)
大多数机器学习算法在计算中使用两个数据点之间的欧氏距离
特征在幅度、单位和范围上很大的变化,这引起了问题
高数值特征在距离计算中的权重大于低数值特征
通过特征标准化或Z分数归一化来完成
导入sklearn.preprocessing 库中的StandardScala
用法:
1. [[-1. 2.64575131 -0.77459667 0.26306757 0.12381479] 2. [ 1. -0.37796447 -0.77459667 -0.25350148 0.46175632] 3. [-1. -0.37796447 1.29099445 -1.97539832 -1.53093341] 4. [-1. -0.37796447 1.29099445 0.05261351 -1.11141978] 5. [ 1. -0.37796447 -0.77459667 1.64058505 1.7202972 ] 6. [-1. -0.37796447 1.29099445 -0.0813118 -0.16751412] 7. [ 1. -0.37796447 -0.77459667 0.95182631 0.98614835] 8. [ 1. -0.37796447 -0.77459667 -0.59788085 -0.48214934]] 9. X_test 10. [[-1. 2.64575131 -0.77459667 -1.45882927 -0.90166297] 11. [-1. 2.64575131 -0.77459667 1.98496442 2.13981082]]