Linux系统中输入设备的应用编程实现

简介: 大家好,今天主要来聊一聊,如何使用Linux系统下的输入设备进行应用编程。

537240ec916048ea8e83938d95576417.png

第一:什么是输入设备

    先来了解一下什么是输入设备(称为input设备),常见的输入设备有鼠标、键盘、触摸屏、遥控器、画图板等,用户通过输入设备与系统进行交互。


    由上面可知,输入设备种类非常多,那么Linux系统如何管理呢?Linux系统为了统一管理这些输入设备,实现了一套能够兼容所有输入设备的框架,那么这个框架就是input子系统。驱动开发人员基于input子系统开发输入设备的驱动程序,input子系统可以屏蔽硬件的差异,向应用层提供一套统一的接口。


    基于input子系统注册成功的输入设备,都会在/dev/input目录下生产对应的设备节点(设备文件),设备文件节点名称通常为eventX()(X表示一个数字编号0,1,2,3,等),譬如/dev/input/event0、/dev/input/event1、 /dev/input/event2 等,通过读取这些设备节点可以获取输入设备上报的数据。

第二:读取数据的流程

   如果我们要读取触摸屏的数据,假设触摸屏设备对应的设备节点为/dev/input/event0,那么数据读取流程如下:

    1、应用程序打开/dev/input/event0设备文件。


    2、应用程序发去读操作(譬如调用read),如果没有数据可读则会进入休眠(阻塞I/O情况下)。


    3、当有数据可读时,应用程序会被唤醒,读操作获取到数据返回。


    4、应用程序对读取到的数据进行解析。


    当无数据可读时,程序会进入休眠状态(也就是阻塞),譬如应用程序读触摸屏数据,如果当前并没有去触碰触摸屏,自然是无数据可读。当我们用手指触摸触摸屏或者在屏上滑动时,此时就会产生触摸数据、 应用程序就有数据可读了,应用程序会被唤醒,成功读取到数据。那么对于其它输入设备亦是如此,无数据 可读时应用程序会进入休眠状态(阻塞式 I/O 方式下),当有数据可读时才会被唤醒。

第三:应用程序该如何解析

    应用程序打开输入设备对应的设备文件,向其发起读操作,那么这个读操作获取到的是什么样的数据呢?其实每一次read操作获取的都是一个struct input_event结构体数据,该结构体定义在头文件中,它的定义如下:

struct input_event{
    struct timeval time;
    __u16 type;
    __u16 code;
    __s32 value;
};

结构体中的time成员变量是一个struct timeval类型的变量,该结构体在前面给大家介绍过,内核会记录每个上报的事件及发生的时间,并通过变量 time 返回给应用程序。时间参数通常不是那么重要,而其它 3 个成员变量 type、code、value 更为重要。


    type:用于描述发生了哪一种类型的事件,Linux系统所支持的输入事件类型如下所示:

#define EV_SYN 0x00 //同步类事件,用于同步事件
#define EV_KEY 0x01 //按键类事件
#define EV_REL 0x02 //相对位移类事件(譬如鼠标)
#define EV_ABS 0x03 //绝对位移类事件(譬如触摸屏)
#define EV_MSC 0x04 //其它杂类事件

 以上这些宏定义也是在头文件中,所以在有应用程序中需要包含该头文件:一种输入设备通常可以产生多种不同类型的事件,譬如点击鼠标按键(左键、右键,或鼠标上的其他按键)时会上报按键类事件,移动鼠标时则会上报相对位移类事件。


    code:code表示该类事件中的哪一个具体事件,以上列举的每一种事件类型中都包含一系列具体事件,譬如一个键盘通常有很多按键,譬如字母A、B、C、D或者数字1、2、3、4等,而code变量则告知应用程序是哪一个按键发生了输入事件。每一种事件类型包含多种不同的事件,譬如按键类事件;

#define KEY_RESERVED 0
#define KEY_ESC 1 //ESC 键
#define KEY_1 2 //数字 1 键
#define KEY_2 3 //数字 2 键
#define KEY_TAB 15 //TAB 键
#define KEY_Q 16 //字母 Q 键
#define KEY_W 17 //字母 W 键
#define KEY_E 18 //字母 E 键
#define KEY_R 19 //字母 R 键

相对位移事件

#define REL_X 0x00 //X 轴
#define REL_Y 0x01 //Y 轴
#define REL_Z 0x02 //Z 轴
#define REL_RX 0x03
#define REL_RY 0x04

绝对位移事件

   触摸屏设备是一种绝对位移设备,它能产生绝对位移事件;譬如对于触摸屏来说,一个触摸点所包含的信息可能有多种,譬如触摸点的X轴坐标、Y轴坐标、Z轴坐标,按压大小以及接触面积等,所以code变量告知应用程序当前上报的是触摸点的哪一种信息。

#define ABS_X 0x00 //X 轴
#define ABS_Y 0x01 //Y 轴
#define ABS_Z 0x02 //Z 轴
#define ABS_RX 0x03
#define ABS_RY 0x04
#define ABS_RZ 0x05
#define ABS_THROTTLE 0x06
#define ABS_RUDDER 0x07
#define ABS_WHEEL 0x08
#define ABS_GAS 0x09

以上除了列举出来的之外,还有很多,大家可以预览头文件。


    value:内核每次上报事件都会向应用层发送一个数据value,对value值的解释随着code的变化而变化。譬如对于按键事件(type=1)来说,如果code=2(键盘上的数字键1,也就是KEY_1),那么如果value等于1,则表示KEY_1键按下;value等于0表示KEY_1键松开,如果value等于2则表示KEY_1键长按。在绝对位移事件中(type=3),如果 code=0(触摸点 X 坐标 ABS_X),那么 value 值就等于触摸点的 X 轴坐标值;同理,如果 code=1(触摸点 Y 坐标 ABS_Y),此时value 值便等于触摸点的 Y 轴坐标值;所以对 value 值的解释需要根据不同的 code 值而定!

第四:数据同步方法

     应用程序读取输入设备上报的数据时,一次 read 操作只能读取一个 struct input_event 类型数据,譬如对于触摸屏来说,一个触摸点的信息包含了 X 坐标、Y 坐标以及其它信息,对于这样情况,应用程序需要执行多次 read 操作才能把一个触摸点的信息全部读取出来,这样才能得到触摸点的完整信息。那么应用程序如何得知本轮已经读取到完整的数据了呢?其实这就是通过同步事件来实现的,内核将本轮需要上报、发送给接收者的数据全部上报完毕后,接着会上报一个同步事件,以告知应用程序本轮数据已经完整、可以进行同步了。


    所有的输入设备都需要上报同步事件通常是SYN_REPORT,而value值通常为0。

第五:读取struct input_event数据代码实现

    对输入设备调用read()会读取到一个struct input_event类型数据。

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>
int main(int argc, char *argv[])
{
 struct input_event in_ev = {0};
 int fd = -1;
  /* 校验传参 */
 if (2 != argc) {
 fprintf(stderr, "usage: %s <input-dev>\n", argv[0]);
 exit(-1);
 }
 /* 打开文件 */
 if (0 > (fd = open(argv[1], O_RDONLY))) {
 perror("open error");
 exit(-1);
 }
 for ( ; ; ) {
 /* 循环读取数据 */
 if (sizeof(struct input_event) !=
 read(fd, &in_ev, sizeof(struct input_event))) {
 perror("read error");
 exit(-1);
 }
 printf("type:%d code:%d value:%d\n",
 in_ev.type, in_ev.code, in_ev.value);
 }
}

 分析:该案件是,在出厂系统中,该案件驱动基于input子系统而实现,所以在/dev/input目录下存在KEY0的设备节点,具体是哪个设备节点,可以查看/proc/bus/input/devices文件得知。

b2e220afba5bbbe5f5cbb1f0050edbc3.png

执行结果如下:

7a204359455bf8aead2f70ed4f1e2431.png

程序运行后,执行按下 KEY0、松开 KEY0 等操作,终端将会打印出相应的信息,如上图所示。


     第一行中 type 等于 1,表示上报的是按键事件 EV_KEY,code=114,打开 input-event-codes.h 头文件进行查找,可以发现 cpde=114 对应的是键盘上的 KEY_VOLUMEDOWN 按键,这个开发板出厂系统已经配置好的。而 value=1 表示按键按下,所以整个第一行的意思就是按键 KEY_VOLUMEDOWN被按下。


   第二行,表示上报了 EV_SYN 同步类事件(type=0)中的 SYN_REPORT 事件(code=0),表示本轮数据已经完整、报告同步。


    第三行,type 等于 1,表示按键类事件,code 等于 114、value 等于 0,所以表示按键 KEY_VOLUMEDOWN被松开。


     第四行,又上报了同步事件。


     所以整个上面 4 行的打印信息就是开发板上的 KEY0 按键被按下以及松开这个过程,内核所上报的事件以及发送给应用层的数据 value。我们试试长按按键 KEY0,按住不放,如下所示:

9410d040b7f94aaf6fa9f7622932bfba.png

 可以看到上报按键事件时,对应的 value 等于 2,表示长按状态。

 总结:使用好标准的输入设备系统,对实现输入功能具有重要意义。

目录
相关文章
|
18小时前
|
Linux 编译器 调度
xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务
本文介绍了如何将POSIX应用程序编译为在Xenomai实时内核上运行的程序。
11 1
xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务
|
19小时前
|
消息中间件 存储 Linux
linux实时应用如何printf输出不影响实时性?
本文探讨了Linux实时任务中为何不能直接使用`printf(3)`,并介绍了实现不影响实时性的解决方案。实时任务的执行时间必须确定且短,但`printf(3)`的延迟取决于多个因素,包括用户态glibc缓冲、内核态TTY驱动和硬件。为确保实时性,通常将非实时IO操作交给低优先级任务处理,通过实时进程间通信传递信息。然而,即使这样,`printf(3)`在glibc中的实现仍可能导致高优先级任务阻塞。Xenomai 3提供了一个实时的`printf()`实现,通过libcobalt库在应用编译链接时自动处理,预分配内存,使用共享内存和线程特有数据来提高效率和实时性。
9 0
linux实时应用如何printf输出不影响实时性?
|
22小时前
|
监控 安全 Linux
Linux系统入侵排查(三)
本文介绍了Linux系统入侵排查的相关知识。首先解释了进行系统入侵排查的原因,即当企业遭受黑客攻击、系统崩溃或其他安全事件时,需要迅速恢复系统并找出入侵来源。接着,重点讲述了日志入侵排查的重要性,因为日志文件记录了系统的重要活动,可以提供入侵行为的线索。
|
23小时前
|
安全 Linux Shell
Linux系统入侵排查(二)
本文介绍了Linux系统入侵排查的步骤,包括检查历史命令记录、可疑端口和进程、开机启动项以及定时任务。作者强调了了解这些技能对于攻防两端的重要性,并提供了相关命令示例,如查看`/root/.bash_history`记录、使用`netstat`分析网络连接、检查`/etc/rc.local`和`/etc/cron.*`目录下的可疑脚本等。此外,还提到了如何查看和管理服务的自启动设置,以判断是否被恶意篡改。文章旨在帮助读者掌握Linux服务器安全维护的基本技巧。
|
1天前
|
缓存 安全 Linux
Linux系统入侵排查(一)
本文探讨了在遭遇黑客入侵或系统异常时进行应急响应和排查的必要性,重点介绍了基于Kali Linux的入侵排查步骤。排查的目标是找出潜在的恶意活动,恢复系统的安全性,并防止未来攻击。总结来说,进行Linux系统入侵排查需要密切关注账号安全,跟踪历史命令,及时识别并消除安全隐患。同时,保持对最新攻击手段和技术的了解,以便更好地防御和应对潜在的网络安全威胁。
|
1天前
|
Linux C语言
【Linux】 拿下 系统 基础文件操作!!!
怎么样,我们的猜测没有问题!!!所以语言层的文件操作函数,本质底层是对系统调用的封装!通过不同标志位的封装来体现w r a+等不同打开类型! 我们在使用文件操作时,一般都要使用语言层的系统调用,来保证代码的可移植性。因为不同系统的系统调用可以会不一样!
11 2
|
1天前
|
负载均衡 Linux 应用服务中间件
Linux系统中前后端分离项目部署指南
Linux系统中前后端分离项目部署指南
|
1天前
|
关系型数据库 MySQL Linux
在Linux系统上实现高效安装与部署环境的全方位指南
在Linux系统上实现高效安装与部署环境的全方位指南
|
1月前
|
缓存 Linux 测试技术
安装【银河麒麟V10】linux系统--并挂载镜像
安装【银河麒麟V10】linux系统--并挂载镜像
174 0
|
17天前
|
Linux 开发工具 Android开发
Docker系列(1)安装Linux系统编译Android源码
Docker系列(1)安装Linux系统编译Android源码
21 0