深入浅出Linux设备驱动编程--结构化设备驱动程序

简介:
结构化设备驱动程序
在1~9节关于设备驱动的例子中,我们没有考虑设备驱动程序的结构组织问题。实际上,Linux设备驱动的开发者习惯于一套约定俗成的数据结构组织方法和程序框架。
设备结构体
Linux设备驱动程序的编写者喜欢把与某设备相关的所有内容定义为一个设备结构体,其中包括设备驱动涉及的硬件资源、全局软件资源、控制(自旋锁、互斥锁、等待队列、定时器等),在涉及设备的操作时,仅仅操作这个结构体就可以了。
对于“globalvar”设备,这个结构体就是:
struct globalvar_dev
{
  int global_var = 0;
  struct semaphore sem;
  wait_queue_head_t outq;
  int flag = 0;
};
open()和release()
一般来说,较规范的open( )通常需要完成下列工作:
1. 检查设备相关错误,如设备尚未准备好等;
2. 如果是第一次打开,则初始化硬件设备;
3. 识别次设备号,如果有必要则更新读写操作的当前位置指针f_ops;
4. 分配和填写要放在file->private_data里的数据结构;
5. 使用计数增1。
release( )的作用正好与open( )相反,通常要完成下列工作:
1. 使用计数减1;
2. 释放在file->private_data中分配的内存;
3. 如果使用计算为0,则关闭设备。
我们使用LDD2中scull_u的例子:
int scull_u_open(struct inode *inode, struct file *filp)
{
    Scull_Dev *dev = &scull_u_device; /* device information */
    int num = NUM(inode->i_rdev);
    if (!filp->private_data && num > 0)
        return -ENODEV; /* not devfs: allow 1 device only */
    spin_lock(&scull_u_lock);
    if (scull_u_count && 
        (scull_u_owner != current->uid) &&  /* allow user */
        (scull_u_owner != current->euid) && /* allow whoever did su */
                    !capable(CAP_DAC_OVERRIDE)) { /* still allow root */
            spin_unlock(&scull_u_lock);
            return -EBUSY;   /* -EPERM would confuse the user */
    }
    if (scull_u_count == 0)
        scull_u_owner = current->uid; /* grab it */
    scull_u_count++;
    spin_unlock(&scull_u_lock);
    /* then, everything else is copied from the bare scull device */
    if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
        scull_trim(dev);
    if (!filp->private_data)
        filp->private_data = dev;
    MOD_INC_USE_COUNT;
    return 0;          /* success */
}
int scull_u_release(struct inode *inode, struct file *filp)
{
    scull_u_count--; /* nothing else */
    MOD_DEC_USE_COUNT;
    return 0;
}
上面所述为一般意义上的设计规范,应该说是option(可选的)而非强制的。

 本文转自 21cnbao 51CTO博客,原文链接:http://blog.51cto.com/21cnbao/120086,如需转载请自行联系原作者

目录
打赏
0
0
0
0
348
分享
相关文章
试试Linux设备命令行运维工具——Wowkey
WowKey 是一款专为 Linux 设备设计的命令行运维工具,提供自动化、批量化、标准化的运维解决方案。它简单易用、高效集成且无依赖,仅需 WIS 指令剧本文件、APT 账号密码文件和 wowkey 命令即可操作。通过分离鉴权与执行过程,WowKey 让运维人员专注于决策,摆脱繁琐的交互与执行工作,大幅提升运维效率与质量。无论是健康检查、数据采集还是配置更新,WowKey 都能助您轻松应对大规模设备运维挑战。立即从官方资源了解更多信息:https://atsight.top/training。
Linux设备命令行运维工具WowKey问答
WowKey 是一款用于 Linux 设备运维的工具,可通过命令行手动或自动执行指令剧本,实现批量、标准化操作,如健康检查、数据采集、配置更新等。它简单易用,只需编写 WIS 指令剧本和 APT 帐号密码表文件,学习成本极低。支持不同流派的 Linux 系统,如 RHEL、Debian、SUSE 等,只要使用通用 Shell 命令即可通吃Linux设备。
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
如何在阿里云的linux上搭建Node.js编程环境?
本指南介绍如何在阿里云Linux服务器(Ubuntu/CentOS)上搭建Node.js环境,包含两种安装方式:包管理器快速安装和NVM多版本管理。同时覆盖全局npm工具配置、应用部署示例(如Express服务)、PM2持久化运行、阿里云安全组设置及外部访问验证等步骤,助你完成开发与生产环境的搭建。
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
67 17
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
67 26
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
191 13
Linux内核驱动程序接口 【ChatGPT】
Linux内核驱动程序接口 【ChatGPT】
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等