拼音分词器

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 安装方式参考IK分词器

安装方式参考IK分词器

测试:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}



自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

声明自定义分词器如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
      "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"  //可以解决同音字问题
      }
    }
  }
}

测试:


自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:


  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组。

创建索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

思路分析

常见的数据同步方案有三种

  • 同步调用
  • 异步通知
  • 监听binlog

方式一同步调用

基本步骤如下:


  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

方式二异步通知

流程如下:


  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

方式三 监听binlog

流程如下:


  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

三种特点:

方式一:同步调用


  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高


方式二:异步通知


  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性


方式三:监听binlog


  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
6月前
|
JSON 自然语言处理 Shell
|
6月前
|
JSON 自然语言处理 数据格式
ElasticSearchIK分词器的安装与使用IK分词器
ElasticSearchIK分词器的安装与使用IK分词器
71 0
|
自然语言处理
IK分词器设置了停用词部分没有生效问题
IK分词器设置了停用词部分没有生效问题
|
自然语言处理 算法
中文文本处理分词的二元模型
中文文本处理分词的二元模型
177 1
中文文本处理分词的二元模型
|
自然语言处理
IK分词器自定义词汇
IK分词器自定义词汇
|
自然语言处理 BI
分词
中文分词介绍
分词
|
机器学习/深度学习 人工智能 自然语言处理
分词的那些事
使用阿里云学习分词,分词就是指将连续的自然语言文本切分成具有语义合理性和完整性的词汇序列的过程。
分词的那些事
|
自然语言处理
关于分词
假期重新把之前在新浪博客里面的文字梳理了下,搬到这里。本文围绕分词作一些入门资源信息介绍,偏分词应用。内容10年前的,不代表最新的内容啊。
143 0
pinyin4j:获取中文串拼音或拼音首字母
pinyin4j:获取中文串拼音或拼音首字母
356 0