python动态规划算法实例详解

简介: 如果大家对“动态规划”这个生僻的术语不理解的话,那就先听小刘给大家说个现实生活中的实际案例吧:

python动态规划算法实例详解

一、什么是动态规划?

如果大家对“动态规划”这个生僻的术语不理解的话,那就先听小刘给大家说个现实生活中的实际案例吧:

虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?凑出来5元钱的这一个过程也可以称之为动态规划算法。

二、新视角:从斐波那契数列看动态规划

斐波那契数列

image.png

练习:使用递归和非递归的方法来求解斐波那契数列的第 n

代码如下:

def fibnacci(n):
  if n == 1 or n == 2:
    return 1
  else:
    return fibnacci(n - 1) + fibnacci(n - 2)
 print(fibnacci(10)) # 55

如果看不懂上面模棱两可的介绍,还有下面更加直观的代码:

f(1) = 1
f(2) = 1
f(3) = f(1) + f(2) = 1+ 1 = 2
f(4) = f(3) + f(2) = 2 + 1 = 3
...
f(n) = f(n-1) + f(n-2)

三、实例扩展(爬楼梯)

1. 题目描述

假设你正在爬楼梯,需要n阶才能到达楼顶,每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

2. 示例

示例1

输入: 2

输出: 2

解释: 有以下两种方法可以爬到楼顶:

  1. 1 阶 + 1 阶
  2. 2 阶

示例2

输入: 3

输出: 3

解释: 有以下三种方法可以爬到楼顶:

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

3. 解析

如果给的两个示例看的不是特别清楚,你可以当阶梯为0,那么上楼梯方法0种这是必然,当阶梯只有1那么上楼梯方法只有1种:

当4个台阶:

输入:4

输出:4

  1. 1阶 + 1阶 + 1阶 + 1阶
  2. 2阶 + 2阶
  3. 1阶 + 2阶 + 1阶
  4. 2阶 + 1阶 + 1阶
  5. 1阶 + 1阶 + 2阶

那么得到:

image.png

如果感觉看的不明显可以推理一下5阶,6阶…

可以得到当我们想爬n阶楼梯,我们可以得到:p ( n − 1 ) + p ( n − 2 ) p p(n-1) + p(n-2) pp(n−1)+p(n−2)p 为爬楼梯方法。

4. 代码实现

class Solution:
  def climbStairs(self, n: int) -> int:
    num_list = [0,1,2]
    if n==1:
      return num_list[1]
    elif n==2:
      return num_list[2]
    else:
      for i in range(3,n+1):
        num_list.append(num_list[i-1]+num_list[i-2])
    print(num_list)
    return num_list[n]
obj = Solution()
result = obj.climbStairs(10)
print(result)

提交LeetCode只击败了12.72%的人,继续优化:

class Solution:
  def climbStairs(self, n: int) -> int:
    a,b,c = 0,1,2
    if n == 1:
      return b
    if n == 2:
      return c
    while n>0:
      c = a + b
      a,b = b,c
      n -= 1
    return c
obj = Solution()
result = obj.climbStairs(8)

四、结语

今天的算法实例详解就分享到这里了,你们知道什么是动态规划了吗?🥰

相关文章
|
12天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
28天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
1天前
|
算法 安全 网络安全
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
27 9
|
8天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
30 10
|
26天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
52 17
|
1月前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
46 20
|
30天前
|
存储 人工智能 算法
深度解密:员工飞单需要什么证据之Python算法洞察
员工飞单是企业运营中的隐性风险,严重侵蚀公司利润。为应对这一问题,精准搜集证据至关重要。本文探讨如何利用Python编程语言及其数据结构和算法,高效取证。通过创建Transaction类存储交易数据,使用列表管理订单信息,结合排序算法和正则表达式分析交易时间和聊天记录,帮助企业识别潜在的飞单行为。Python的强大功能使得从交易流水和沟通记录中提取关键证据变得更加系统化和高效,为企业维权提供有力支持。
|
29天前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
26 3
|
1月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
50 5

热门文章

最新文章