《机器学习系统设计:Python语言实现》一2.3 安装SciPy栈

简介:

.本节书摘来自华章出版社《机器学习系统设计:Python语言实现》一书中的第2章,第2.3节,作者 [美] 戴维·朱利安(David Julian),更多章节内容可以访问云栖社区“华章计算机”公众号查看

2.3 安装SciPy栈

SciPy栈组成了Python最常用的科学、数学和机器学习库(请访问scipy.org)。这些库包括NumPy、Matplotlib、SciPy库自身和IPython。这些包可以在已有的Python安装之上独立安装,也可以作为完整的发布(发布版,distro)进行安装。如果你的机器上没有安装Python,那么最简单的方式是使用发布版进行安装。Python的主要发布支持大多数平台,而且在一个包中包含了你所需要的一切。如果你的机器上已经有了配置过的Python安装,那么也可以选择单独安装这些包及其依赖,不过这需要花些时间。
大多数发布提供了你所需要的所有工具,而且许多都包含强大的开发环境。其中最好的两个是Anaconda(www.continuum.io/downloads)和Canopy(http://www.enthought.comm/products/canopy/)。两者都有免费版和商业版。我自己会使用Python的Anaconda发布。
安装Python的主发布通常是件挺轻松的任务。
请注意,各种Python发布中所包含的模块并不一定是完全一样的,你可能还需要安装一些模块,或者重新安装某个模块的正确版本。

相关文章
|
2月前
|
Unix 编译器 C语言
[oeasy]python052_[系统开发语言为什么默认是c语言
本文介绍了C语言为何成为系统开发的首选语言,从其诞生背景、发展历史及特点进行阐述。C语言源于贝尔实验室,与Unix操作系统相互促进,因其简洁、高效、跨平台等特性,逐渐成为主流。文章还提及了C语言的学习资料及其对编程文化的影响。
32 5
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
69 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
107 0
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
88 2
|
3月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
172 1
|
3月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
225 1
|
3月前
|
机器学习/深度学习 算法 TensorFlow
基于深度学习的【野生动物识别】系统设计与实现~Python
动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟', '云豹', '变色龙', '壁虎', '狞猫', '狮子', '猎豹', '美洲狮', '美洲虎', '老虎', '蜥蜴', '蝾螈', '蟾蜍', '豹猫', '钝吻鳄', '雪豹','非洲豹', '鬣蜥'。本系统是一个完整的人工智能,机器学习,深度学习项目,包含训练预测代码,训练好的模型,WEB网页端界面,数
219 2
|
3月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
105 3

热门文章

最新文章

推荐镜像

更多