科研必会Python库之 Matplotlib库教程(一)

简介: 科研必会Python库之 Matplotlib库教程

科研必会Python库之Matplotlib库教程


Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。Matplotlib 可以用来绘制各种静态,动态,交互式的图表。可是说是科研论文必备神器了。Matplotlib 通常与 NumPy 、 SciPy、Pandas配合使用, 这几个库相互协同几乎可以代替MatLab的一些常用功能。

1.matplotlib安装

Matplotlib 官网

NumPy 官网

SciPy 官网

我们可以通过终端指令来安装

pip install -U matplotlib

安装后可以通过如下指令来查看matplotlib库版本

import matplotlib
print(matplotlib.__version__)
#3.5.1

2.Matplotlib.Pyplot介绍


Pyplot 是 Matplotlib 的子库,使用该子库可以很方方便的让用户绘制2D图表。


Pyplot 内置很多绘图函数,通过一些间的的调用就可以画出很多既好看又实用的图像。


在导入该库的时候,我们一般都使用如下指令给matplotlib.pyplot换一个名字

import matplotlib.pyplot as plt

3.折线图绘制


3.1 默认参数绘制


import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints)
plt.show()

image.png

3.2 线条样式选择


linestyle参数控制

import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linestyle = 'dotted') #linestyle
plt.show()

image.png

linestyle简写形式plt.plot(ypoints, ls = ‘-.’):

import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, ls = '--')
plt.show()

image.png线条样式对照表

类型 简写 说明
‘solid’ (默认) ‘-’ 实线
‘dotted’ ‘:’ 点虚线
‘dashed’ ‘–’ 破折线
‘dashdot’ ‘-.’ 点划线
‘None’ ‘’ 或 ’ ’ 不画线

3.3 线条颜色选择


color 参数控制, color 参数同样可以简写为c,默认颜色为浅蓝色;

import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, color = 'b')
plt.show()

image.png

颜色对照表

颜色标记 描述
‘r’ 红色
‘g’ 绿色
‘b’ 蓝色
‘c’ 青色
‘m’ 品红
‘y’ 黄色
‘k’ 黑色
‘w’ 白色

经过测试发现自定义颜色也是支持的,只需要输入十六进制颜色值或者RGB参数就可以

这里给大家推荐一篇博文,里面给出了RGB颜色表

3.4 线条粗细选择


linewidth 参数来控制,同样可以简写为 lw,值可以是小数

import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linewidth = '10.5')
plt.show()

image.png

3.5 单图多线条绘制


import matplotlib.pyplot as plt
import numpy as np
y1 = np.array([3, 7, 5, 9])
y2 = np.array([6, 1, 12, 8])
plt.plot(y1)
plt.plot(y2)
plt.show()

image.png

这里注意一个细节,我们只给出了Y轴的数据,没有给X轴的数据,X 的值默认设置为 [0, 1, 2, 3]

我们也可以自己设置 X 坐标值

image.png


相关文章
|
3天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
9 1
|
5天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
10 3
|
8天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
22 5
|
7天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
16 3
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
25 4
|
6天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
12 1
|
3天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
8 0
|
3天前
|
Python
SciPy 教程 之 Scipy 显著性检验 1
本教程介绍Scipy显著性检验,包括统计假设、零假设和备择假设等概念,以及如何使用scipy.stats模块进行显著性检验,以判断样本与总体假设间是否存在显著差异。
8 0
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。