【C语言入门数据结构】时间复杂度和空间复杂度练习题

简介: 时间复杂度和空间复杂度练习题深入理解

时间复杂度练习及解析:

实例1:

// 计算Func2的时间复杂度
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

答案是O(N),2N+10

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

实例3:

// 计算Func4的时间复杂度
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

实例4:

/ 计算strchr的时间复杂度
const char * strchr ( const char * str, int character );

实例5:

// 计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

实例6:

// 计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n-1;
    // [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid-1;
        else
            return mid;
    }
    return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    return Fac(N-1)*N;
}

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法去掉常量,系数,时间复杂度为 O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
  3. 实例3基本操作执行了10次,通过推导大O阶方法将常量改为1,时间复杂度为 O(1)
  4. 实例4,strchr函数相当于
while(*str)
{
  if(*str == character)
    return str;
  else
    str++;
}
  1. 实际上就是查找字符串元素并返回该位置的指针,但是我们并不知道字符串的大小,所以基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
  2. 实例5冒泡排序,

    第一趟需要比n-1次,第二趟比较n-2次,n-1 + n-2 +……+2+1
    基本操作执行最好N次,最坏执行次数为(首项+末项)*项数/2,即(N*(N-1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N2)
  3. 实例6 二分查找

    基本操作执行最好1次,最坏的情况是只剩一个元素,O(logN)次,时间复杂度为 O(logN)
    logN在算法分析中表示是底数为2,对数为N。
  4. 实例7通过计算分析发现基本操作递归了N次,每次调用了常数次,所以时间复杂度为O(N)。
  5. 实例8斐波那契数列

根据大O复杂度表示法通过计算分析发现基本操作递归了2N 次,时间复杂度为O(2N)。


空间复杂组练习及解析:

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if(n==0)
         return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

实例3:

// 计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{
    if(N == 0)
        return 1;
    return Fac(N-1)*N;
}

实例4:

// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

  1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)。
  2. 实例2动态开辟了N个空间,空间复杂度为 O(N)。
  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。
  4. 可以参考时间复杂度的图来理解,空间是可以重复利用的Fib(N-1)和Fib(N-2)实际上是调用同一块空间,可以理解为每一层建立一个函数栈帧,所以空间复杂度为O(N)。

这里我们可以通过对下面两个函数调用来理解,下面是函数栈帧开辟空间的演示

如图程序运行后,输出的第一次调用和第二次调用的两个变量的地址是一样的,

调用这两个函数时开辟的空间在同一个位置,斐波那契数中Fib(N-1)和Fib(N-2)的调用与之类似。


复杂度的oj练习

1、消失的数字OJ链接

这里我们就会有很多思路:

思路1:求和相减

(n+1)*n/2 - (数组中所有相加)

时间复杂度:O(N)

空间复杂度:O(1)

思路2: qsort排序/ 冒泡排序

时间复杂度:O(logN*N) O(N2)

空间复杂度:O(logN) O(1)

思路3:异或(不开辟新数组)

//思路1
int missingNumber(int* nums, int numsSize)
{
    int N = numsSize;
    int ret = N*(N+1)/2;
    for(int i = 0;i < numsSize;++i)
        {
            ret -= nums[i];
        }
         return ret;
}
//思路3
int missingNumber(int* nums, int numsSize)
{
    int N = numsSize;
    int x = 0;
    for(size_t i = 0;i < numsSize; ++i)
    {
        x ^=  nums[i];
    }
    for(size_t j = 0;j < N+1;++j)
    {
        x ^= j;
    }
    return x;
}

2、旋转数组OJ链接

代码:

第一种思路,效率太低,这里不作讲解,只给出参考

思路二:

void rotate(int* nums, int numsSize, int k)
{
    k %=numsSize;//为避免k>numSize
    //numsSize是变长数组
    int tmp[numsSize];
    //后k个拷贝前面
    int j = 0;
    for(int i = numsSize-k;i<numsSize;++i)
    {
        tmp[j] = nums[i];
        ++j;
    }
    //前n-k个拷贝到后面
    for(int i = 0;i<numsSize-k;++i)
    {
        tmp[j] = nums[i];
        ++j;
    }
    //拷贝回去
     for(int i = 0;i<numsSize;++i)
    {
       nums[i] = tmp[i];
    }
}

思路三:

void reverse(int *a, int begin, int end)//交换函数封装
{
    while(begin < end)
    {
        int tmp = a[begin];
        a[begin] = a[end];
        a[end] = tmp;
        ++begin;
        --end;
    }
}
void rotate(int*nums,int numsSize,int k)
{
    k %=numsSize;
    reverse(nums,0,numsSize-k-1);//调用函数
    reverse(nums,numsSize-k,numsSize-1);//调用函数
    reverse(nums,0,numsSize-1);//调用函数
}

结语:

这里我们关于【数据结构复杂度】的内容就介绍完了,文章中某些内容我们之前有介绍,所以只是一笔带过,还请谅解。
希望以上内容对大家有所帮助👀,如有不足望指出🙏

前路漫漫!努力变强💪💪 吧!!

相关文章
|
12月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
499 1
|
9月前
|
定位技术 C语言
c语言及数据结构实现简单贪吃蛇小游戏
c语言及数据结构实现简单贪吃蛇小游戏
|
10月前
|
搜索推荐 C语言
数据结构(C语言)之对归并排序的介绍与理解
归并排序是一种基于分治策略的排序算法,通过递归将数组不断分割为子数组,直到每个子数组仅剩一个元素,再逐步合并这些有序的子数组以得到最终的有序数组。递归版本中,每次分割区间为[left, mid]和[mid+1, right],确保每两个区间内数据有序后进行合并。非递归版本则通过逐步增加gap值(初始为1),先对单个元素排序,再逐步扩大到更大的区间进行合并,直至整个数组有序。归并排序的时间复杂度为O(n*logn),空间复杂度为O(n),且具有稳定性,适用于普通排序及大文件排序场景。
|
11月前
|
存储 NoSQL 编译器
【C语言】指针的神秘探险:从入门到精通的奇幻之旅 !
指针是一个变量,它存储另一个变量的内存地址。换句话说,指针“指向”存储在内存中的某个数据。
351 7
【C语言】指针的神秘探险:从入门到精通的奇幻之旅 !
|
10月前
|
存储 编译器 C语言
【C语言程序设计——入门】C语言入门与基础语法(头歌实践教学平台习题)【合集】
本文档介绍了C语言环境配置和编程任务,主要内容包括: - **C语言环境配置**:详细讲解了在Windows系统上配置C语言开发环境的步骤。 - **第1关:程序改错**:包含任务描述、相关知识(如头文件引用、基本语法规则)、编程要求、测试说明及通关代码。 - **第2关:scanf函数**:涉及`scanf`和`printf`函数的格式与使用方法,提供编程要求、测试说明及通关代码。 文档结构清晰,涵盖从环境搭建到具体编程任务的完整流程,适合初学者学习和实践。
265 4
|
10月前
|
C语言
【C语言程序设计——入门】基本数据类型与表达式(头歌实践教学平台习题)【合集】
这份文档详细介绍了编程任务的多个关卡,涵盖C语言的基础知识和应用。主要内容包括: 1. **目录**:列出所有关卡,如`print函数操作`、`转义字符使用`、`数的向上取整`等。 2. **各关卡的任务描述**:明确每关的具体编程任务,例如使用`printf`函数输出特定字符串、实现向上取整功能等。 3. **相关知识**:提供完成任务所需的背景知识,如格式化输出、算术运算符、关系运算符等。 4. **编程要求**:给出具体的代码编写提示。 5. **测试说明**:包含预期输入输出,帮助验证程序正确性。 6. 文档通过逐步引导学习者掌握C语言的基本语法和常用函数,适合初学者练习编程技能。
264 1
|
12月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
345 5
|
12月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
387 1
|
12月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
263 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
99 0
栈区的非法访问导致的死循环(x64)

热门文章

最新文章