「Python」爬虫实战-北京公交线路信息爬取(requests+bs4)

简介: 使用requests爬取北京公交线路信息,目标网址为[https://beijing.8684.cn/](https://beijing.8684.cn/)。爬取的具体信息为公交线路名称、公交的运营范围、运行时间、参考票价、公交所属的公司以及服务热线、公交来回线路的途径站点。

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第4天, 点击查看活动详情

公交线路爬取

使用requests爬取北京公交线路信息,目标网址为https://beijing.8684.cn/

爬取的具体信息为公交线路名称、公交的运营范围、运行时间、参考票价、公交所属的公司以及服务热线、公交来回线路的途径站点。

考虑到现代技术与日俱进,反爬措施层数不穷,故可以考虑构建用户代理池,能够避免总是使用一个 UA 来访问网站,因为短时间内总使用一个 UA 高频率访问的网站,可能会引起网站的警觉,从而封杀掉 IP。

这里对User Agent的构造进行分析。标准的UA是由浏览器标识 (操作系统标识; 加密等级标识; 浏览器语言) 、渲染引擎标识、 版本信息组成,所以不妨采用构造UA的方法结合随机函数,随机生成一个UA,以达到混淆服务器的效果。
核心部分代码如下:

def get_ua():
    first_num = random.randint(55, 76)
    third_num = random.randint(0, 3800)
    fourth_num = random.randint(0, 140)
    os_type = [
        '(Windows NT 6.1; WOW64)', '(Windows NT 10.0; WOW64)', 
        '(X11; Linux x86_64)', '(Macintosh; Intel Mac OS X 10_14_5)'
    ]
    chrome_version = 'Chrome/{}.0.{}.{}'.format(first_num, third_num, fourth_num)

    ua = ' '.join(['Mozilla/5.0', random.choice(os_type), 'AppleWebKit/537.36',
                   '(KHTML, like Gecko)', chrome_version, 'Safari/537.36']
                 )
    return ua

观察到目标网站的公交线路分别有以1开头至9开头以及url的变化。不难看出,以什么开头的公交就在https://beijing.8684.cn/ 后面加上list?。若以字母B开头,则为listB。通过字符串的拼接就可以得到不同数字或字母开头的公交线路名称。
image.pngimage.png
F12键观察一下页面的元素排列,通过观察页面源代码发现,我们所看到的代码与页面源代码没有出入(有些在页面源代码中并没有渲染信息在HTML中,而是通过js渲染到浏览器中)。
image.png

下面以1路车为例,进入到公交线路信息详情的页面进行信息提取。
image.png
观察页面发现1路公交车的详情页面 -> https://beijing.8684.cn/x_322e21c5 的url的最后的参数刚好和 https://beijing.8684.cn/list1 页面中的 a标签的href属性对应起来。

所以大胆假设:每一个list页面中相同位置的a标签的属性href中的值就是相应的线路详情路线的后缀,所以每个线路的具体目标网址只需要拿到list页面中的href值,然后和https://beijing.8684.cn/ 拼接就可得到线路的url

对于公交线路的名称、运行时间、所属区域、参考票价以及所属公司在页面中的位置都是在div class="info"的盒子里,并且发现class="info"的属性值在整个页面中只出现了一次。通过get_text()方法就可以提取到所需要的信息。

而对于公交来回具体经过的地方,在页面渲染时,由于经过的站太多,在页面需要隐藏显示,所以直接找到站点对应的div并提取text时,会提取到一些不需要的信息。在获取到信息还需要根据实际情况处理掉冗余的信息,保证爬取信息的正确性。

由于目标网站对于每个页面的渲染可能存在不同,也可能笔者在提取需要的信息考虑不完全等原因,并不能完全保证每一个页面都能完整的提取到所需要的信息。
故需要利用到try...except...来捕捉异常将不符合提取信息逻辑的页面的url另存一个文件,并在信息爬取结束后,观察该页面,进而完善原有代码或者模块。

运行效果

信息爬取成功界面:
image.png
爬取的信息:
image.png

注意到error文件中的链接只有一个,说明前面的逻辑还是写的相当不错的,😀囊括了大部分的情况,能够爬取到目标信息。

具体代码

from bs4 import BeautifulSoup
import requests
import random

# UA池
def get_headers(referer_url):
    first_num = random.randint(55, 76)
    third_num = random.randint(0, 3800)
    fourth_num = random.randint(0, 140)
    os_type = [
        '(Windows NT 6.1; WOW64)', '(Windows NT 10.0; WOW64)', '(X11; Linux x86_64)',
        '(Macintosh; Intel Mac OS X 10_14_5)'
    ]
    chrome_version = 'Chrome/{}.0.{}.{}'.format(first_num, third_num, fourth_num)

    ua = ' '.join(['Mozilla/5.0', random.choice(os_type), 'AppleWebKit/537.36',
                   '(KHTML, like Gecko)', chrome_version, 'Safari/537.36']
                  )
    headers = {
        "User-Agent": ua,
        "Referer": referer_url
    }
    return headers


def main():
    url = 'https://beijing.8684.cn'

    # bus_head = [str(i) for i in range(1, 10)] + ['B', 'C', 'D', 'F']

    bus_head = [str(i) for i in range(1, 3)]

    for bus in bus_head:
        bus_single_url = url + '/list' + bus  # 1字开头的bus
        resp = requests.get(bus_single_url, headers=get_headers(url))
        bus_main_html = BeautifulSoup(resp.text, 'html.parser')

        bus_route_list = bus_main_html.find('div', class_="list clearfix").find_all('a')
        route_href = []  # 只存取线路的链接-/x_322e21c5, 完整的url需要拼接  
        # 即:url + route_href[0] = https://beijing.8684.cn/x_322e21c5
        for single_route in bus_route_list:
            route_href.append(single_route.get('href'))

        for href in route_href:
            route_url = url + href

            bus_detail = requests.get(route_url, headers=get_headers(bus_single_url))

            bus_detail_html = BeautifulSoup(bus_detail.text, 'html.parser')

            try:
                bus_info = bus_detail_html.find('div', class_="info")

                detail = bus_info.get_text('#').split('#')[:6]

                route_total = bus_detail_html.find_all('div', 'bus-excerpt mb15')
                bus_lzlist = bus_detail_html.find_all('div', 'bus-lzlist mb15')

                with open('bus.txt', 'a') as f:
                    f.write('\n')
                    f.write('\n'.join(detail[:4]))  # 只需要写入一次
                    f.write('\n' + detail[-2] + detail[-1])  # 公司名

                for route, bus_ls in zip(route_total, bus_lzlist):
                    trip = route.find('div', 'trip').get_text()
                    start, end = trip.split('—')  # 获取起始站点和终点站的名字
                    li_list = [li.get_text() for li in bus_ls.find_all('a')]  # 获取经过站点
                    tmp = [li for idx, li in enumerate(li_list[1:-1]) if li != start and li != end] # 去掉首尾两个站点
                    tmp = [li_list[0]] + tmp + [li_list[-1]]  # 加上起始站点和终点站
                    tmp = [f'{idx + 1}:{r}' for idx, r in enumerate(tmp)]  # 添加站点编号
                    with open('bus.txt', 'a') as f:
                        f.write('\n' + trip + '\n')
                        f.write('->'.join(tmp))
                print(f'{route_url}信息写入成功!')
            except:
                with open('error.txt', 'a') as f:  # 爬取不到的路线,在细致分析
                    f.write(route_url + '\n')


if __name__ == '__main__':
    main()
一些心得:

在提取详情站点信息的时候由于最终写入的文本站点信息不能重复,即公交的起始点和终点只能出现一次,但是在直接使用get_text()方法时,或获取到多余的站点,即终点站的名称出现了两次。

解决方法:
对获取到的站点列表的中间部分(即去除了起始点和终点的部分)进行遍历,若当前的值是终点站或者起始站,则将该值从列表中删除。

相关文章
|
1天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
11 4
|
1天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
1天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
10 1
|
2天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
4天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
13 1
|
4天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
12 1
|
6天前
|
Linux 开发者 iOS开发
Python系统调用实战:如何在不同操作系统间游刃有余🐟
本文介绍了 Python 在跨平台开发中的强大能力,通过实际例子展示了如何使用 `os` 和 `pathlib` 模块处理文件系统操作,`subprocess` 模块执行外部命令,以及 `tkinter` 创建跨平台的图形用户界面。这些工具和模块帮助开发者轻松应对不同操作系统间的差异,专注于业务逻辑。
20 2
|
6天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
5天前
|
开发者 Python
探索Python中的装饰器:从入门到实战
【10月更文挑战第30天】本文将深入浅出地介绍Python中一个强大而有趣的特性——装饰器。我们将通过实际代码示例,一步步揭示装饰器如何简化代码、增强函数功能并保持代码的可读性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效编程的大门。
|
8天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
46 6