决策树算法

简介: 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法怎么理解这句话?

一、决策树原理

1.认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法怎么理解这句话?通过一个对话例子

2345_image_file_copy_78.jpg

  1. 决策树就如同上图所示,将各个特征二分类,想一想这个女生为什么把年龄放在最上面判断!!

  1. 1决策树分类原理详解
    为了更好理解决策树具体怎么分类的,我们通过一个问题例子

2345_image_file_copy_79.jpg

问题:如何对这些客户进行分类预测?你是如何去划分?

有可能你的划分是这样的

2345_image_file_copy_80.jpg

那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的

2345_image_file_copy_81.jpg

2.2 信息熵 

那来玩个猜测游戏,猜猜这32支球队那个是冠军。并且猜测错误付出代价。每猜错一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军? (前提是:不知道任意球队的信息、历史比赛记录、实力等)

2345_image_file_copy_82.jpg

为了使代价最小,可以使用二分法猜测:

我可以把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,就可以知道结果。

2345_image_file_copy_83.jpg

我们来看这个式子:

  • 32支球队,log32=5比特
  • 64支球队,log64=6比特

2345_image_file_copy_84.jpg

香农指出,它的准确信息量应该是,p为每个球队获胜的概率(假设概率相等,都为1/32),我们不用钱去衡量这个代价了,香浓指出用比特:

H = -(p1logp1 + p2logp2 + … + p32log32) = - log32

2.3信息熵的定义

2345_image_file_copy_85.jpg

  • H的专业术语称之为信息熵,单位为比特。
  • “谁是世界杯冠军”的信息量应该比5比特少,特点(重要):
  • 当这32支球队夺冠的几率相同时,对应的信息熵等于5比特只要概率发生任意变化,信息熵都比5比特大

2.4 决策树的划分依据之一------信息增益

定义与公式:

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵

H(D|A)之差,即公式为:

2345_image_file_copy_86.jpg

公式的详细解释:

2345_image_file_copy_87.jpg

2.5 贷款特征重要计算

2345_image_file_copy_88.jpg

我们以A1、A2、A3、A4代表年龄、有工作、有自己的房子和贷款情况。最终计算的结果g(D, A1) =

0.313, g(D, A2) = 0.324, g(D, A3) = 0.420,g(D, A4) = 0.363。所以我们选择A3 作为划分的第一个特征。

这样我们就可以一棵树慢慢建立

2.6 决策树的三种算法实现

当然决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算。

2345_image_file_copy_89.jpg

二、决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)

决策树分类器:

criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’

max_depth:树的深度大小

random_state:随机数种子

其中会有些超参数:max_depth:树的深度大小

三、案例:泰坦尼克号乘客生存预测

  • 泰坦尼克号数据

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。

1、 乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。

2、 其中age数据存在缺失。

数据:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt

2345_image_file_copy_91.jpg

分析

  • 选择我们认为重要的几个特征 [‘pclass’, ‘age’, ‘sex’]填充缺失值
  • 特征中出现类别符号,需要进行one-hot编码处理(DictVectorizer)x.to_dict(orient=“records”)需要将数组特征转换成字典数据数据集划分
  • 决策树分类预测

代码

2345_image_file_copy_94.jpg

2345_image_file_copy_93.jpg

四、保存树的结构到dot文件

1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式

tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])

2、工具:(能够将dot文件转换为pdf、png)

  • 安装graphviz
  • ubuntu:sudo apt-get install graphviz Mac:brew install graphviz

3、运行命令

  • 然后我们运行这个命令
  • dot -Tpng tree.dot -o tree.png
export_graphviz(dc, out_file="./tree.dot", feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

四、决策树总结

优点:

  • 简单的理解和解释,树可视化

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。

改进:

  • 减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
目录
相关文章
|
4月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
111 1
|
1月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
33 2
|
26天前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
34 0
|
2月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
29 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
66 2
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
31 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
53 9