《Hadoop大数据分析与挖掘实战》——1.2节从餐饮服务到数据挖掘

简介:

本节书摘来自华章社区《Hadoop大数据分析与挖掘实战》一书中的第1章,第1.2节从餐饮服务到数据挖掘,作者张良均 樊哲 赵云龙 李成华 ,更多章节内容可以访问云栖社区“华章社区”公众号查看

1.2 从餐饮服务到数据挖掘
企业经营最大的目的就是盈利,而餐饮业企业盈利的核心就是其菜品和顾客,也就是其提供的产品和服务对象。企业经营者每天都在想推出什么样的菜系和种类会吸引更多的顾客,究竟各种顾客各自的喜好是什么,在不同的时段是不是有不同的菜品畅销,当把几种不同的菜品组合在一起推出时是不是能够得到更好的效果,未来一段时间菜品原材料应该采购多少……
T餐饮的经营者想尽快地解决这些疑问,使自己的企业更加符合现有顾客的口味,吸引更多的新顾客,又能根据不同的情况和环境转换自己的经营策略。T餐饮在经营过程中,通过分析历史数据,总结出一些行之有效的经验:
在点餐过程中,由有经验的服务员根据顾客特点进行菜品推荐,一方面可提高菜品的销量,另外一方面可减少客户点餐的时间和频率,提高用户体验;
根据菜品历史销售情况,综合考虑节假日、气候和竞争对手等影响因素,对菜品销量进行预测,以便餐饮企业提前准备原材料;
定期对菜品销售情况进行统计,分类统计出好评菜和差评菜,为促销活动和新菜品推出提供支持;
根据就餐频率和金额对顾客的就餐行为进行评分,筛选出优质客户,定期回访和送去关怀。
上述措施的实施都依赖于企业已有业务系统中保存的数据,但是目前从这些数据中获得有关产品和客户的特点以及能够产生价值的规律更多依赖于管理人员的个人经验。如果有一套工具或系统,能够从业务数据中自动或半自动地发现相关的知识和解决方案,这将极大地提高企业的决策水平和竞争能力。这种从数据中“淘金”,从大量数据(包括文本)中挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程,这就是数据挖掘;它是利用各种分析工具在大量数据中寻找其规律和发现模型与数据之间关系的过程,是统计学、数据库技术和人工智能技术的综合。
这种分析方法可避免“人治”的随意性,避免企业管理仅依赖个人领导力的风险和不确定性,实现精细化营销与经营管理。

相关文章
|
4月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
105 10
|
4月前
|
数据采集 存储 NoSQL
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
|
2月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
60 2
|
4月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
127 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
80 1
|
4月前
|
分布式计算 并行计算 大数据
【数据挖掘】百度2015大数据云计算研发笔试卷
百度2015年大数据云计算研发笔试卷的题目总结,涵盖了Hadoop、Spark、MPI计算框架特点、TCP连接建立过程、数组最大和问题、二分查找实现以及灯泡开关问题,提供了部分题目的解析和伪代码。
55 1
|
4月前
|
供应链 算法 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛B题的解决方案,深入分析了产品订单数据,并使用Arimax和Var模型进行了需求预测,旨在为企业供应链管理提供科学依据,论文共23页并包含实现代码。
103 0
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
66 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
76 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
5月前
|
分布式计算 资源调度 安全
Hadoop停止所有Hadoop服务
【7月更文挑战第20天】
129 2

热门文章

最新文章