《Flume日志收集与MapReduce模式》一1.1 Flume 0.9

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

本节书摘来自华章出版社《Flume日志收集与MapReduce模式》一书中的第1章,第1.1节,作者 [美] 史蒂夫·霍夫曼(Steve Hoffman)斯里纳特·佩雷拉(Srinath Perera),更多章节内容可以访问云栖社区“华章计算机”公众号查看

1.1 Flume 0.9

Flume是在2011年被首次引入到Cloudera的CDH3分发中的。它由一套工作守护进程(代理)构成,这些守护进程是通过Zookeeper(一个配置与协调系统)根据一个或多个集中的Master配置而成的。在Master上,你可以在Web UI中查看代理状态,也可以以集中的方式在UI或是通过命令行Shell的方式取出配置(这两种方式都是通过Zookeeper与工作代理进行通信的)。
可以通过3种模式发送数据,分别叫作Best Effort(BE)、Disk Failover(DFO)以及End-to-End(E2E)。Masters用于E2E模式,而多个Master配置尚不成熟,因此通常情况下只会使用一个Master,这使得其成为了E2E数据流失败的主要原因。Best Effort见名知意,代理会尝试并发送数据,如果无法发送,那么数据就会被丢弃。这种模式非常适合于度量等场景,一些差异是可以被接受的,因为新数据很快就会到来。DiskFailover模式会将无法发送的数据存储到本地磁盘上(有时也存储到本地数据库中),并且会不断重试,直到可以将数据发送到数据流中的下一个接受者为止。这对于计划好(或计划外)的断电场景很方便,只要有足够的本地磁盘能够缓存负载即可。
2011年6月,Cloudera将Flume项目的控制权交给了Apache基金会。2012年,Flume项目就从孵化状态变成了顶级项目。在孵化的这一年中,开发人员就已经开始基于Star Trek Themed标签对Flume进行重构,并创建了Flume-NG(Flume the Next Generation)。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
6月前
|
存储 分布式计算 监控
【Flume】Flume 监听日志文件案例分析
【4月更文挑战第4天】【Flume】Flume 监听日志文件案例分析
|
6月前
|
存储 运维 监控
【Flume】flume 日志管理中的应用
【4月更文挑战第4天】【Flume】flume 日志管理中的应用
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
3月前
|
存储 数据采集 数据处理
【Flume拓扑揭秘】掌握Flume的四大常用结构,构建强大的日志收集系统!
【8月更文挑战第24天】Apache Flume是一个强大的工具,专为大规模日志数据的收集、聚合及传输设计。其核心架构包括源(Source)、通道(Channel)与接收器(Sink)。Flume支持多样化的拓扑结构以适应不同需求,包括单层、扇入(Fan-in)、扇出(Fan-out)及复杂多层拓扑。单层拓扑简单直观,适用于单一数据流场景;扇入结构集中处理多源头数据;扇出结构则实现数据多目的地分发;复杂多层拓扑提供高度灵活性,适合多层次数据处理。通过灵活配置,Flume能够高效构建各种规模的数据收集系统。
66 0
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
42 2
|
1月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
41 1
|
3月前
|
存储 分布式计算 大数据
【Flume的大数据之旅】探索Flume如何成为大数据分析的得力助手,从日志收集到实时处理一网打尽!
【8月更文挑战第24天】Apache Flume是一款高效可靠的数据收集系统,专为Hadoop环境设计。它能在数据产生端与分析/存储端间搭建桥梁,适用于日志收集、数据集成、实时处理及数据备份等多种场景。通过监控不同来源的日志文件并将数据标准化后传输至Hadoop等平台,Flume支持了性能监控、数据分析等多种需求。此外,它还能与Apache Storm或Flink等实时处理框架集成,实现数据的即时分析。下面展示了一个简单的Flume配置示例,说明如何将日志数据导入HDFS进行存储。总之,Flume凭借其灵活性和强大的集成能力,在大数据处理流程中占据了重要地位。
69 3
|
6月前
|
分布式计算 Hadoop Java
【集群模式】执行MapReduce程序-wordcount
【集群模式】执行MapReduce程序-wordcount
|
6月前
|
SQL 数据采集 数据挖掘
nginx+flume网络流量日志实时数据分析实战
nginx+flume网络流量日志实时数据分析实战
176 0
|
6月前
|
分布式计算 Java Hadoop
【本地模式】第一个Mapreduce程序-wordcount
【本地模式】第一个Mapreduce程序-wordcount