机器学习模型监控清单

简介: 一旦在生产环境中部署了机器学习模型,就需要确保它的性能。在本文中,我们建议如何监视您的模型和要使用的开源工具。建立机器学习模型并不容易。在生产环境中部署服务更加困难。但即使你成功地将所有流水线连接在一起,事情也不会就此停止。

一旦在生产环境中部署了机器学习模型,就需要确保它的性能。在本文中,我们建议如何监视您的模型和要使用的开源工具。

建立机器学习模型并不容易。在生产环境中部署服务更加困难。但即使你成功地将所有流水线连接在一起,事情也不会就此停止。

一旦模型投入使用,我们就必须立即考虑平稳运行。毕竟,它现在正在交付业务价值!模型性能的任何中断都会直接导致实际业务损失。

我们需要确保模型交付。不仅作为一个返回API响应的软件,而且作为一个机器学习系统,我们可以信任它来做出决策。

这意味着我们需要监控我们的模型。


网络异常,图片无法展示
|


如果ML在生产中让您措手不及,这里有一个清单,列出了需要注意的事项。


1.服务健康

机器学习服务仍然是一项服务。您的公司可能已经建立了一些可以重用的软件监控流程。如果模型实时运行,则需要适当的警报和负责人随时待命。

即使您只处理批处理模型,也不要例外!我们仍然需要跟踪内存利用率、CPU负载等标准健康指标。

我们的目标是确保服务是运作的,并遵守必要的限制条件,例如响应速度。

开源工具:Grafana


2.数据质量和完整性

机器学习模型有什么问题吗?在绝大多数情况下,数据都是罪魁祸首

上游流水线和模型中断。用户进行了未通知的schema更改。数据可能在源头消失,物理传感器失效,等等。

因此,验证输入数据是否符合我们的期望至关重要。检查可能包括范围合规性、数据分布、特征统计、相关性或我们认为数据集“正常”的任何行为

我们的目标是在它返回不可靠的响应之前,确认我们正在提供模型可以处理的数据。

开源工具:Great Expectations


3. 数据和目标漂移

事情会改变的, 即使我们处理非常稳定的过程。 几乎每个机器学习模型都有这个不合适宜的特性:它会随着时间的推移而退化。

当模型接收到它在训练中没有看到的数据时,我们可能会遇到数据漂移。想象一下来自不同年龄组、营销渠道或地理区域的用户。

如果现实世界的模式发生变化,概念漂移就会开始。想想一些随意的事情,比如:影响所有客户行为的全球流行病。 或者市场上提供慷慨的免费套餐的新竞争产品。 它改变了用户对您的营销活动的反应方式。

两种漂移的最终衡量标准是模型质量的下降。 但有时,实际值尚不清楚,我们无法直接计算。 在这种情况下,需要跟踪最重要的指标。 我们可以监控输入数据或目标应变量的属性是否发生了变化

网络异常,图片无法展示
|



例如,您可以跟踪主要的模型特征和模型预测的分布。 然后,如果它们与过去的时间范围有显着差异,则触发警报。

我们的目标是获得世界或数据发生变化的早期信号:是时候更新我们的模型了。

开源工具:Evidently


4. 模型性能

了解您的模型是否运行良好的最直接方法是将您的预测与实际值进行对比。您可以在模型训练阶段使用相同的指标,例如:分类的 Precision/Recall、回归的 RMSE 等等。如果数据质量或现实世界模式出现问题,我们将看到指标逐渐下降。

这里有一些警告。

  • 首先,ground truth实际标签通常会有延迟。例如,如果你预测的时间很长,或者数据交付滞后。有时您需要额外的努力来标记新数据以检查您的预测是否正确。在这种情况下,首先跟踪数据和目标漂移作为预警是有意义的。
  • 其次,不仅需要跟踪模型质量,还需要跟踪相关的业务 KPI。 ROC AUC 的下降并不能直接说明它对营销转化的影响有多大。将模型质量与业务指标联系起来或找到一些可解释的代理至关重要。
  • 第三,您的质量指标应该适合用户场景。例如,如果您有不平衡的类,则准确度指标远非理想。对于回归问题,您可能会关心错误符号。因此,您不仅应该跟踪绝对值,还应该跟踪误差分布。区分偶然的异常值和真正的衰减也很重要。

所以,明智地选择你的指标!

网络异常,图片无法展示
|


我们的目标是跟踪模型在多大程度上满足了其目的,以及在出现问题时如何调试它。

开源工具:Evidently


5. 分段性能表现

对于许多模型,上述监控设置就足够了。 但是,如果您处理更关键的用户场景,还有更多的项目要检查。

例如,模型在哪里犯了更多的错误,它在哪里工作得最好?

您可能已经知道要跟踪的一些特定分段(segments),例如:您的高级客户与整体基数的模型准确性。 它需要一个自定义质量指标,仅为您定义的段内的对象计算。

在其他情况下,主动搜索性能低下的段是有意义的。想象一下,您的房地产定价模型始终建议特定地理区域的报价高于实际报价。这是您要注意的事情!

根据场景,我们可以通过在模型输出之上添加后处理或业务逻辑来解决它。 或者通过重建模型来解决表现不佳的段。

网络异常,图片无法展示
|
我们的目标是超越总体性能并了解特定数据切片的模型质量。


6. 偏见/公平


当涉及到金融、医疗保健、教育和其他模型决策可能产生严重影响的领域时,我们需要更仔细地审查我们的模型。

例如,模型性能可能会因不同人口群体在训练数据中的表现而异。 模型创建者需要意识到这种影响,并与监管机构和利益相关者一起拥有减轻不公平的工具。

为此,我们需要跟踪合适的指标,例如准确率中的奇偶校验。它适用于模型验证和持续的生产监控。因此,仪表板上还有一些指标!

我们的目标是确保公平对待所有子群体并跟踪合规性。

开源工具:Fairlearn


7.异常值

我们知道模型会出错。 在某些用户场景中,例如广告定位,我们可能不在乎个别输入是否显得奇怪或平常。 只要它们不构成有意义的部分,模型就会失败!

在其他应用程序中,我们可能想了解每个此类情况。 为了最大限度地减少错误,我们可以设计一组规则来处理异常值。 例如,将它们发送给人工审核,而不是自动做出决定。 在这种情况下,我们需要一种方法来相应地检测和标记它们。

我们的目标是标记模型预测可能不可信的异常数据输入。

开源工具:Seldon Alibi-Detect

网络异常,图片无法展示
|


监控听起来可能很无聊。 但是,让机器学习在现实世界中发挥作用至关重要。 不要等到模型失败时才创建第一个仪表板!


相关文章
|
29天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
14天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
65 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
41 12
|
29天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
51 8
|
29天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
51 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0

热门文章

最新文章