GhostNet架构复现--CVPR2020

简介: 由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。**本文提出了一种新颖的 Ghost 模块,可以从廉价的操作中生成更多的特征图。基于一组内在特征图,我们应用一系列成本低廉的线性变换来生成许多ghost特征图,这些特征图可以充分揭示内在特征的信息。所提出的 Ghost 模块可以作为一个即插即用的组件来升级现有的卷积神经网络。 Ghost 瓶颈旨在堆叠 Ghost 模块,然后可以轻松建立轻量级的 GhostNet。**
参考论文:GhostNet: More Features from Cheap Operations

作者:Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu

1、论文摘要

  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。本文提出了一种新颖的 Ghost 模块,可以从廉价的操作中生成更多的特征图。基于一组内在特征图,我们应用一系列成本低廉的线性变换来生成许多ghost特征图,这些特征图可以充分揭示内在特征的信息。所提出的 Ghost 模块可以作为一个即插即用的组件来升级现有的卷积神经网络。 Ghost 瓶颈旨在堆叠 Ghost 模块,然后可以轻松建立轻量级的 GhostNet。

  在基准上进行的实验表明,所提出的 Ghost 模块是基线模型中卷积层的一个令人印象深刻的替代方案,我们的 GhostNet 可以在 ImageNet ILSVRC2012 分类数据集上以相似的计算成本实现比 MobileNetV3 更高的识别性能(例如 75.7% 的 top-1 准确率) .代码在 https://github.com/huawei-noah/ghostnet

2、Ghost Module

  参考b导:神经网络学习小记录58——Keras GhostNet模型的复现详解

image-20220905220818540

   图 2. 卷积层和提出的用于输出相同数量特征图的 Ghost 模块的图示。 Φ代表廉价操作。

  Ghost Module将普通卷积分为两部分,首先进行一个普通的1x1卷积,这是一个少量卷积,比如正常使用32通道的卷积,这里就用16通道的卷积,这个1x1卷积的作用类似于特征整合,生成输入特征层的特征浓缩

  然后我们再进行depthwise convolution,这个深度可分离卷积是逐层卷积,它利用上一步获得的特征浓缩生成Ghost特征图

  Ghost Module总结:

  • 利用1x1卷积获得输入特征的必要特征浓缩
  • 利用Depthwise Convolution获得特征浓缩的相似特征图

3、Ghost Bottleneck

image-20220905221305175

   图 3. Ghost bottleneck。左:stride=1 的Ghost bottleneck;右图:stride=2 的Ghost bottleneck。

  提出的 Ghost 瓶颈主要由两个堆叠的 Ghost 模块组成。

  第一个 Ghost 模块充当增加通道数量的扩展层。我们将输出通道数与输入通道数之比称为扩展比。第二个 Ghost 模块减少通道数以匹配shortcut path。然后在这两个 Ghost 模块的输入和输出之间使用残差连接

  批标准化 (BN) [25] 和 ReLU 非线性在每一层之后应用,除了 MobileNetV2 [44] 建议的第二个 Ghost 模块之后不使用 ReLU。

  当stride=2的时候,残差边上会加一个步长为2的Depthwise Convolution和一个1x1普通卷积。

4、GhostNet网络结构

image-20220905221751745

  表 1. GhostNet 的整体架构。 G-bneck 表示 Ghost bottleneck。 #exp 表示扩展大小。 #out 表示输出通道的数量。 SE 表示是否使用 SE 模块。

  上述 Ghost bottleneck适用于 stride=1。对于 stride=2 的情况,通过下采样层实现shortcut path,并在两个 Ghost 模块之间插入 stride=2 的深度卷积。在实践中,Ghost 模块中的主要卷积是逐点卷积以提高效率。

  第一层是一个标准的卷积层,有 16 个卷积核,然后是一系列通道逐渐增加的 Ghost bottleneck。这些 Ghost bottleneck根据其输入特征图的大小分为不同的阶段。除了每个阶段的最后一个使用 stride=2 之外,所有 Ghost 瓶颈都使用 stride=1。

  最后,使用全局平均池和卷积层将特征图转换为 1280 维特征向量以进行最终分类

  挤压和激发 (SE) 模块 [22] 也应用于一些ghost bottleneck中的残差层。

5、Tensorflow代码复现

import tensorflow as tf
import math
from tensorflow.keras import layers
from tensorflow.keras.models import Model
from plot_model import plot_model

5.1 SE注意力机制模块

def se_block(input_feature, ratio=4, name=None):
    # 获取通道数
    channel = input_feature.shape[-1]
    se_filters = int(channel // ratio)

    x = layers.GlobalAveragePooling2D()(input_feature)

    x = layers.Reshape((1, 1, channel))(x)

    # 两个FC,使用两个1x1卷积代替
    x = layers.Conv2D(filters=se_filters,
                      kernel_size=(1, 1),
                      activation='relu',
                      kernel_initializer='he_normal',
                      use_bias=False)(x)
    x = layers.Conv2D(filters=channel,
                      kernel_size=(1, 1),
                      kernel_initializer='he_normal',
                      use_bias=False)(x)
    # x = layers.Activation('sigmoid')(x)
    x = layers.Activation('hard_sigmoid')(x)
    # 将权值乘上原输入的特征层即可。
    out = layers.multiply([input_feature, x])
    return out
  这块参考大佬的文章和源码,发现用的是hard_sigmoid激活函数。

5.2 Ghost Module

def GhostModule(inputs, exp, ratio, stride=1, relu=True):
    # ratio一般取2,
    # 因为最后x和dw有个堆叠操作,这样才能保证输出特征层的通道数等于exp
    output_channels = math.ceil(exp * 1.0 / ratio)
    # 1x1 conv
    x = layers.Conv2D(filters=output_channels,
                      kernel_size=(1, 1),
                      strides=stride,
                      padding='same',
                      use_bias=False)(inputs)
    x = layers.BatchNormalization()(x)
    if relu:
        x = layers.ReLU()(x)
    # depthwise convolution
    dw = layers.DepthwiseConv2D(kernel_size=(3, 3),
                                strides=stride,
                                padding='same',
                                use_bias=False)(x)
    dw = layers.BatchNormalization()(dw)
    if relu:
        dw = layers.ReLU()(dw)
    # 在通道维度堆叠
    x = layers.concatenate([x, dw], axis=-1)
    return x

5.3 Ghost Bottleneck

def GhostBottleNeck(inputs,  # 输入张量
                    output_channel,  # 输出通道数
                    kernel,  # depthwise conv的卷积核大小
                    strides,  # 步长
                    exp_channel,  # expandion size
                    ratio,  # GhostModule中第一个1*1卷积下降的通道数,一般为2
                    se):  # 是否使用SE注意力机制
    x = GhostModule(inputs, exp=exp_channel, ratio=ratio, relu=True)

    # stride=2的时候需要在两个Ghost模块之间插入stride=2的depthwise conv
    if strides > 1:
        x = layers.DepthwiseConv2D(kernel_size=kernel,
                                   strides=strides,
                                   padding='same',
                                   use_bias=False)(x)
        x = layers.BatchNormalization()(x)

    # 是否使用SE注意力机制
    if se:
        x = se_block(x)
    # 第二个Ghost Module
    x = GhostModule(x, exp=output_channel, ratio=ratio, relu=False)

    # 当stride=1的时候,且输入和输出特征图的shape相等,直接使用shortcut connection
    if strides == 1 and inputs.shape[-1] == x.shape[-1]:
        res = inputs
    # 经过stride=2的下采样时,对残差边进行2x2DWConv和1x1Conv
    else:
        # 2x2 DWConv
        res = layers.DepthwiseConv2D(kernel_size=kernel,
                                     strides=strides,
                                     padding='same',
                                     use_bias=False)(inputs)
        res = layers.BatchNormalization()(res)
        # 1x1Conv
        res = layers.Conv2D(filters=output_channel,
                            kernel_size=(1, 1),
                            strides=1,
                            padding='same',
                            use_bias=False)(res)
        res = layers.BatchNormalization()(res)
    x = layers.Add()([x, res])
    return x

5.4 GhostNet网络搭建

  源码中的配置:

image-20220905222703897

  源码的编码风格看着好难受,所以我参考了一些其他大佬的复现代码。
def GhostNet(input_shape=(224, 224, 3), classes=1000, ratio=2):
    inputs = layers.Input(shape=input_shape)
    # 第一个标准卷积
    x = layers.Conv2D(filters=16, kernel_size=(3, 3), strides=2, padding='same',
                      use_bias=False)(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.ReLU()(x)

    x = GhostBottleNeck(x, output_channel=16, kernel=(3, 3), strides=1, exp_channel=16, ratio=ratio, se=False)

    x = GhostBottleNeck(x, output_channel=24, kernel=(3, 3), strides=2, exp_channel=48, ratio=ratio, se=False)

    x = GhostBottleNeck(x, output_channel=24, kernel=(3, 3), strides=1, exp_channel=72, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=40, kernel=(5, 5), strides=2, exp_channel=72, ratio=ratio, se=True)

    x = GhostBottleNeck(x, output_channel=40, kernel=(5, 5), strides=1, exp_channel=120, ratio=ratio, se=True)
    x = GhostBottleNeck(x, output_channel=80, kernel=(3, 3), strides=2, exp_channel=240, ratio=ratio, se=False)

    x = GhostBottleNeck(x, output_channel=80, kernel=(3, 3), strides=1, exp_channel=200, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=80, kernel=(3, 3), strides=1, exp_channel=184, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=80, kernel=(3, 3), strides=1, exp_channel=184, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=112, kernel=(3, 3), strides=1, exp_channel=480, ratio=ratio, se=True)
    x = GhostBottleNeck(x, output_channel=112, kernel=(3, 3), strides=1, exp_channel=672, ratio=ratio, se=True)
    x = GhostBottleNeck(x, output_channel=160, kernel=(5, 5), strides=2, exp_channel=672, ratio=ratio, se=True)

    x = GhostBottleNeck(x, output_channel=160, kernel=(5, 5), strides=1, exp_channel=960, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=160, kernel=(5, 5), strides=1, exp_channel=960, ratio=ratio, se=True)
    x = GhostBottleNeck(x, output_channel=160, kernel=(5, 5), strides=1, exp_channel=960, ratio=ratio, se=False)
    x = GhostBottleNeck(x, output_channel=160, kernel=(5, 5), strides=1, exp_channel=960, ratio=ratio, se=True)

    x = layers.Conv2D(filters=960, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    x = layers.ReLU()(x)

    # 全局平均池化
    x = layers.GlobalAveragePooling2D()(x)
    # 因为后面还有个conv2d,所以这里reshape一下。
    x = layers.Reshape((1, 1, x.shape[-1]))(x)

    x = layers.Conv2D(filters=1280, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    x = layers.ReLU()(x)

    x=layers.Flatten()(x)
    out=layers.Dense(classes,activation='softmax')(x)

    # 构建模型
    model = Model(inputs=inputs, outputs=out)

    return model

5.5 模型摘要

if __name__ == '__main__':
    model = GhostNet(input_shape=(224, 224, 3), classes=1000)
    model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 224, 224, 3) 0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 112, 112, 16) 432         input_1[0][0]                    
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 112, 112, 16) 64          conv2d[0][0]                     
__________________________________________________________________________________________________
re_lu (ReLU)                    (None, 112, 112, 16) 0           batch_normalization[0][0]        
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 112, 112, 8)  128         re_lu[0][0]                      
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 112, 112, 8)  32          conv2d_1[0][0]                   
__________________________________________________________________________________________________
re_lu_1 (ReLU)                  (None, 112, 112, 8)  0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
depthwise_conv2d (DepthwiseConv (None, 112, 112, 8)  72          re_lu_1[0][0]                    
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 112, 112, 8)  32          depthwise_conv2d[0][0]           
__________________________________________________________________________________________________
re_lu_2 (ReLU)                  (None, 112, 112, 8)  0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 112, 112, 16) 0           re_lu_1[0][0]                    
                                                                 re_lu_2[0][0]                    
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 112, 112, 8)  128         concatenate[0][0]                
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 112, 112, 8)  32          conv2d_2[0][0]                   
__________________________________________________________________________________________________
depthwise_conv2d_1 (DepthwiseCo (None, 112, 112, 8)  72          batch_normalization_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 112, 112, 8)  32          depthwise_conv2d_1[0][0]         
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 112, 112, 16) 0           batch_normalization_3[0][0]      
                                                                 batch_normalization_4[0][0]      
__________________________________________________________________________________________________
add (Add)                       (None, 112, 112, 16) 0           concatenate_1[0][0]              
                                                                 re_lu[0][0]                      
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 112, 112, 24) 384         add[0][0]                        
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 112, 112, 24) 96          conv2d_3[0][0]                   
__________________________________________________________________________________________________
re_lu_3 (ReLU)                  (None, 112, 112, 24) 0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
depthwise_conv2d_2 (DepthwiseCo (None, 112, 112, 24) 216         re_lu_3[0][0]                    
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 112, 112, 24) 96          depthwise_conv2d_2[0][0]         
__________________________________________________________________________________________________
re_lu_4 (ReLU)                  (None, 112, 112, 24) 0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 112, 112, 48) 0           re_lu_3[0][0]                    
                                                                 re_lu_4[0][0]                    
__________________________________________________________________________________________________
depthwise_conv2d_3 (DepthwiseCo (None, 56, 56, 48)   432         concatenate_2[0][0]              
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 56, 56, 48)   192         depthwise_conv2d_3[0][0]         
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 56, 56, 12)   576         batch_normalization_7[0][0]      
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 56, 56, 12)   48          conv2d_4[0][0]                   
__________________________________________________________________________________________________
depthwise_conv2d_5 (DepthwiseCo (None, 56, 56, 16)   144         add[0][0]                        
__________________________________________________________________________________________________
depthwise_conv2d_4 (DepthwiseCo (None, 56, 56, 12)   108         batch_normalization_8[0][0]      
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 56, 56, 16)   64          depthwise_conv2d_5[0][0]         
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 56, 56, 12)   48          depthwise_conv2d_4[0][0]         
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 56, 56, 24)   384         batch_normalization_10[0][0]     
__________________________________________________________________________________________________
concatenate_3 (Concatenate)     (None, 56, 56, 24)   0           batch_normalization_8[0][0]      
                                                                 batch_normalization_9[0][0]      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 56, 56, 24)   96          conv2d_5[0][0]                   
__________________________________________________________________________________________________
add_1 (Add)                     (None, 56, 56, 24)   0           concatenate_3[0][0]              
                                                                 batch_normalization_11[0][0]     
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 56, 56, 36)   864         add_1[0][0]                      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 56, 56, 36)   144         conv2d_6[0][0]                   
__________________________________________________________________________________________________
re_lu_5 (ReLU)                  (None, 56, 56, 36)   0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_6 (DepthwiseCo (None, 56, 56, 36)   324         re_lu_5[0][0]                    
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 56, 56, 36)   144         depthwise_conv2d_6[0][0]         
__________________________________________________________________________________________________
re_lu_6 (ReLU)                  (None, 56, 56, 36)   0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
concatenate_4 (Concatenate)     (None, 56, 56, 72)   0           re_lu_5[0][0]                    
                                                                 re_lu_6[0][0]                    
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 56, 56, 12)   864         concatenate_4[0][0]              
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 56, 56, 12)   48          conv2d_7[0][0]                   
__________________________________________________________________________________________________
depthwise_conv2d_7 (DepthwiseCo (None, 56, 56, 12)   108         batch_normalization_14[0][0]     
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 56, 56, 12)   48          depthwise_conv2d_7[0][0]         
__________________________________________________________________________________________________
concatenate_5 (Concatenate)     (None, 56, 56, 24)   0           batch_normalization_14[0][0]     
                                                                 batch_normalization_15[0][0]     
__________________________________________________________________________________________________
add_2 (Add)                     (None, 56, 56, 24)   0           concatenate_5[0][0]              
                                                                 add_1[0][0]                      
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 56, 56, 36)   864         add_2[0][0]                      
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 56, 56, 36)   144         conv2d_8[0][0]                   
__________________________________________________________________________________________________
re_lu_7 (ReLU)                  (None, 56, 56, 36)   0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_8 (DepthwiseCo (None, 56, 56, 36)   324         re_lu_7[0][0]                    
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 56, 56, 36)   144         depthwise_conv2d_8[0][0]         
__________________________________________________________________________________________________
re_lu_8 (ReLU)                  (None, 56, 56, 36)   0           batch_normalization_17[0][0]     
__________________________________________________________________________________________________
concatenate_6 (Concatenate)     (None, 56, 56, 72)   0           re_lu_7[0][0]                    
                                                                 re_lu_8[0][0]                    
__________________________________________________________________________________________________
depthwise_conv2d_9 (DepthwiseCo (None, 28, 28, 72)   1800        concatenate_6[0][0]              
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 28, 28, 72)   288         depthwise_conv2d_9[0][0]         
__________________________________________________________________________________________________
global_average_pooling2d (Globa (None, 72)           0           batch_normalization_18[0][0]     
__________________________________________________________________________________________________
reshape (Reshape)               (None, 1, 1, 72)     0           global_average_pooling2d[0][0]   
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 1, 1, 18)     1296        reshape[0][0]                    
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 1, 1, 72)     1296        conv2d_9[0][0]                   
__________________________________________________________________________________________________
activation (Activation)         (None, 1, 1, 72)     0           conv2d_10[0][0]                  
__________________________________________________________________________________________________
multiply (Multiply)             (None, 28, 28, 72)   0           batch_normalization_18[0][0]     
                                                                 activation[0][0]                 
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 28, 28, 20)   1440        multiply[0][0]                   
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 28, 28, 20)   80          conv2d_11[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_11 (DepthwiseC (None, 28, 28, 24)   600         add_2[0][0]                      
__________________________________________________________________________________________________
depthwise_conv2d_10 (DepthwiseC (None, 28, 28, 20)   180         batch_normalization_19[0][0]     
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 28, 28, 24)   96          depthwise_conv2d_11[0][0]        
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 28, 28, 20)   80          depthwise_conv2d_10[0][0]        
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 28, 28, 40)   960         batch_normalization_21[0][0]     
__________________________________________________________________________________________________
concatenate_7 (Concatenate)     (None, 28, 28, 40)   0           batch_normalization_19[0][0]     
                                                                 batch_normalization_20[0][0]     
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 28, 28, 40)   160         conv2d_12[0][0]                  
__________________________________________________________________________________________________
add_3 (Add)                     (None, 28, 28, 40)   0           concatenate_7[0][0]              
                                                                 batch_normalization_22[0][0]     
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 28, 28, 60)   2400        add_3[0][0]                      
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 28, 28, 60)   240         conv2d_13[0][0]                  
__________________________________________________________________________________________________
re_lu_9 (ReLU)                  (None, 28, 28, 60)   0           batch_normalization_23[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_12 (DepthwiseC (None, 28, 28, 60)   540         re_lu_9[0][0]                    
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 28, 28, 60)   240         depthwise_conv2d_12[0][0]        
__________________________________________________________________________________________________
re_lu_10 (ReLU)                 (None, 28, 28, 60)   0           batch_normalization_24[0][0]     
__________________________________________________________________________________________________
concatenate_8 (Concatenate)     (None, 28, 28, 120)  0           re_lu_9[0][0]                    
                                                                 re_lu_10[0][0]                   
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 120)          0           concatenate_8[0][0]              
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 1, 1, 120)    0           global_average_pooling2d_1[0][0] 
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 1, 1, 30)     3600        reshape_1[0][0]                  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 1, 1, 120)    3600        conv2d_14[0][0]                  
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 1, 1, 120)    0           conv2d_15[0][0]                  
__________________________________________________________________________________________________
multiply_1 (Multiply)           (None, 28, 28, 120)  0           concatenate_8[0][0]              
                                                                 activation_1[0][0]               
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 28, 28, 20)   2400        multiply_1[0][0]                 
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 28, 28, 20)   80          conv2d_16[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_13 (DepthwiseC (None, 28, 28, 20)   180         batch_normalization_25[0][0]     
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, 28, 28, 20)   80          depthwise_conv2d_13[0][0]        
__________________________________________________________________________________________________
concatenate_9 (Concatenate)     (None, 28, 28, 40)   0           batch_normalization_25[0][0]     
                                                                 batch_normalization_26[0][0]     
__________________________________________________________________________________________________
add_4 (Add)                     (None, 28, 28, 40)   0           concatenate_9[0][0]              
                                                                 add_3[0][0]                      
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 28, 28, 120)  4800        add_4[0][0]                      
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, 28, 28, 120)  480         conv2d_17[0][0]                  
__________________________________________________________________________________________________
re_lu_11 (ReLU)                 (None, 28, 28, 120)  0           batch_normalization_27[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_14 (DepthwiseC (None, 28, 28, 120)  1080        re_lu_11[0][0]                   
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, 28, 28, 120)  480         depthwise_conv2d_14[0][0]        
__________________________________________________________________________________________________
re_lu_12 (ReLU)                 (None, 28, 28, 120)  0           batch_normalization_28[0][0]     
__________________________________________________________________________________________________
concatenate_10 (Concatenate)    (None, 28, 28, 240)  0           re_lu_11[0][0]                   
                                                                 re_lu_12[0][0]                   
__________________________________________________________________________________________________
depthwise_conv2d_15 (DepthwiseC (None, 14, 14, 240)  2160        concatenate_10[0][0]             
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, 14, 14, 240)  960         depthwise_conv2d_15[0][0]        
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 14, 14, 40)   9600        batch_normalization_29[0][0]     
__________________________________________________________________________________________________
batch_normalization_30 (BatchNo (None, 14, 14, 40)   160         conv2d_18[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_17 (DepthwiseC (None, 14, 14, 40)   360         add_4[0][0]                      
__________________________________________________________________________________________________
depthwise_conv2d_16 (DepthwiseC (None, 14, 14, 40)   360         batch_normalization_30[0][0]     
__________________________________________________________________________________________________
batch_normalization_32 (BatchNo (None, 14, 14, 40)   160         depthwise_conv2d_17[0][0]        
__________________________________________________________________________________________________
batch_normalization_31 (BatchNo (None, 14, 14, 40)   160         depthwise_conv2d_16[0][0]        
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 14, 14, 80)   3200        batch_normalization_32[0][0]     
__________________________________________________________________________________________________
concatenate_11 (Concatenate)    (None, 14, 14, 80)   0           batch_normalization_30[0][0]     
                                                                 batch_normalization_31[0][0]     
__________________________________________________________________________________________________
batch_normalization_33 (BatchNo (None, 14, 14, 80)   320         conv2d_19[0][0]                  
__________________________________________________________________________________________________
add_5 (Add)                     (None, 14, 14, 80)   0           concatenate_11[0][0]             
                                                                 batch_normalization_33[0][0]     
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 14, 14, 100)  8000        add_5[0][0]                      
__________________________________________________________________________________________________
batch_normalization_34 (BatchNo (None, 14, 14, 100)  400         conv2d_20[0][0]                  
__________________________________________________________________________________________________
re_lu_13 (ReLU)                 (None, 14, 14, 100)  0           batch_normalization_34[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_18 (DepthwiseC (None, 14, 14, 100)  900         re_lu_13[0][0]                   
__________________________________________________________________________________________________
batch_normalization_35 (BatchNo (None, 14, 14, 100)  400         depthwise_conv2d_18[0][0]        
__________________________________________________________________________________________________
re_lu_14 (ReLU)                 (None, 14, 14, 100)  0           batch_normalization_35[0][0]     
__________________________________________________________________________________________________
concatenate_12 (Concatenate)    (None, 14, 14, 200)  0           re_lu_13[0][0]                   
                                                                 re_lu_14[0][0]                   
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 14, 14, 40)   8000        concatenate_12[0][0]             
__________________________________________________________________________________________________
batch_normalization_36 (BatchNo (None, 14, 14, 40)   160         conv2d_21[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_19 (DepthwiseC (None, 14, 14, 40)   360         batch_normalization_36[0][0]     
__________________________________________________________________________________________________
batch_normalization_37 (BatchNo (None, 14, 14, 40)   160         depthwise_conv2d_19[0][0]        
__________________________________________________________________________________________________
concatenate_13 (Concatenate)    (None, 14, 14, 80)   0           batch_normalization_36[0][0]     
                                                                 batch_normalization_37[0][0]     
__________________________________________________________________________________________________
add_6 (Add)                     (None, 14, 14, 80)   0           concatenate_13[0][0]             
                                                                 add_5[0][0]                      
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 14, 14, 92)   7360        add_6[0][0]                      
__________________________________________________________________________________________________
batch_normalization_38 (BatchNo (None, 14, 14, 92)   368         conv2d_22[0][0]                  
__________________________________________________________________________________________________
re_lu_15 (ReLU)                 (None, 14, 14, 92)   0           batch_normalization_38[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_20 (DepthwiseC (None, 14, 14, 92)   828         re_lu_15[0][0]                   
__________________________________________________________________________________________________
batch_normalization_39 (BatchNo (None, 14, 14, 92)   368         depthwise_conv2d_20[0][0]        
__________________________________________________________________________________________________
re_lu_16 (ReLU)                 (None, 14, 14, 92)   0           batch_normalization_39[0][0]     
__________________________________________________________________________________________________
concatenate_14 (Concatenate)    (None, 14, 14, 184)  0           re_lu_15[0][0]                   
                                                                 re_lu_16[0][0]                   
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 14, 14, 40)   7360        concatenate_14[0][0]             
__________________________________________________________________________________________________
batch_normalization_40 (BatchNo (None, 14, 14, 40)   160         conv2d_23[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_21 (DepthwiseC (None, 14, 14, 40)   360         batch_normalization_40[0][0]     
__________________________________________________________________________________________________
batch_normalization_41 (BatchNo (None, 14, 14, 40)   160         depthwise_conv2d_21[0][0]        
__________________________________________________________________________________________________
concatenate_15 (Concatenate)    (None, 14, 14, 80)   0           batch_normalization_40[0][0]     
                                                                 batch_normalization_41[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 14, 14, 80)   0           concatenate_15[0][0]             
                                                                 add_6[0][0]                      
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 14, 14, 92)   7360        add_7[0][0]                      
__________________________________________________________________________________________________
batch_normalization_42 (BatchNo (None, 14, 14, 92)   368         conv2d_24[0][0]                  
__________________________________________________________________________________________________
re_lu_17 (ReLU)                 (None, 14, 14, 92)   0           batch_normalization_42[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_22 (DepthwiseC (None, 14, 14, 92)   828         re_lu_17[0][0]                   
__________________________________________________________________________________________________
batch_normalization_43 (BatchNo (None, 14, 14, 92)   368         depthwise_conv2d_22[0][0]        
__________________________________________________________________________________________________
re_lu_18 (ReLU)                 (None, 14, 14, 92)   0           batch_normalization_43[0][0]     
__________________________________________________________________________________________________
concatenate_16 (Concatenate)    (None, 14, 14, 184)  0           re_lu_17[0][0]                   
                                                                 re_lu_18[0][0]                   
__________________________________________________________________________________________________
conv2d_25 (Conv2D)              (None, 14, 14, 40)   7360        concatenate_16[0][0]             
__________________________________________________________________________________________________
batch_normalization_44 (BatchNo (None, 14, 14, 40)   160         conv2d_25[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_23 (DepthwiseC (None, 14, 14, 40)   360         batch_normalization_44[0][0]     
__________________________________________________________________________________________________
batch_normalization_45 (BatchNo (None, 14, 14, 40)   160         depthwise_conv2d_23[0][0]        
__________________________________________________________________________________________________
concatenate_17 (Concatenate)    (None, 14, 14, 80)   0           batch_normalization_44[0][0]     
                                                                 batch_normalization_45[0][0]     
__________________________________________________________________________________________________
add_8 (Add)                     (None, 14, 14, 80)   0           concatenate_17[0][0]             
                                                                 add_7[0][0]                      
__________________________________________________________________________________________________
conv2d_26 (Conv2D)              (None, 14, 14, 240)  19200       add_8[0][0]                      
__________________________________________________________________________________________________
batch_normalization_46 (BatchNo (None, 14, 14, 240)  960         conv2d_26[0][0]                  
__________________________________________________________________________________________________
re_lu_19 (ReLU)                 (None, 14, 14, 240)  0           batch_normalization_46[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_24 (DepthwiseC (None, 14, 14, 240)  2160        re_lu_19[0][0]                   
__________________________________________________________________________________________________
batch_normalization_47 (BatchNo (None, 14, 14, 240)  960         depthwise_conv2d_24[0][0]        
__________________________________________________________________________________________________
re_lu_20 (ReLU)                 (None, 14, 14, 240)  0           batch_normalization_47[0][0]     
__________________________________________________________________________________________________
concatenate_18 (Concatenate)    (None, 14, 14, 480)  0           re_lu_19[0][0]                   
                                                                 re_lu_20[0][0]                   
__________________________________________________________________________________________________
global_average_pooling2d_2 (Glo (None, 480)          0           concatenate_18[0][0]             
__________________________________________________________________________________________________
reshape_2 (Reshape)             (None, 1, 1, 480)    0           global_average_pooling2d_2[0][0] 
__________________________________________________________________________________________________
conv2d_27 (Conv2D)              (None, 1, 1, 120)    57600       reshape_2[0][0]                  
__________________________________________________________________________________________________
conv2d_28 (Conv2D)              (None, 1, 1, 480)    57600       conv2d_27[0][0]                  
__________________________________________________________________________________________________
activation_2 (Activation)       (None, 1, 1, 480)    0           conv2d_28[0][0]                  
__________________________________________________________________________________________________
multiply_2 (Multiply)           (None, 14, 14, 480)  0           concatenate_18[0][0]             
                                                                 activation_2[0][0]               
__________________________________________________________________________________________________
conv2d_29 (Conv2D)              (None, 14, 14, 56)   26880       multiply_2[0][0]                 
__________________________________________________________________________________________________
batch_normalization_48 (BatchNo (None, 14, 14, 56)   224         conv2d_29[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_26 (DepthwiseC (None, 14, 14, 80)   720         add_8[0][0]                      
__________________________________________________________________________________________________
depthwise_conv2d_25 (DepthwiseC (None, 14, 14, 56)   504         batch_normalization_48[0][0]     
__________________________________________________________________________________________________
batch_normalization_50 (BatchNo (None, 14, 14, 80)   320         depthwise_conv2d_26[0][0]        
__________________________________________________________________________________________________
batch_normalization_49 (BatchNo (None, 14, 14, 56)   224         depthwise_conv2d_25[0][0]        
__________________________________________________________________________________________________
conv2d_30 (Conv2D)              (None, 14, 14, 112)  8960        batch_normalization_50[0][0]     
__________________________________________________________________________________________________
concatenate_19 (Concatenate)    (None, 14, 14, 112)  0           batch_normalization_48[0][0]     
                                                                 batch_normalization_49[0][0]     
__________________________________________________________________________________________________
batch_normalization_51 (BatchNo (None, 14, 14, 112)  448         conv2d_30[0][0]                  
__________________________________________________________________________________________________
add_9 (Add)                     (None, 14, 14, 112)  0           concatenate_19[0][0]             
                                                                 batch_normalization_51[0][0]     
__________________________________________________________________________________________________
conv2d_31 (Conv2D)              (None, 14, 14, 336)  37632       add_9[0][0]                      
__________________________________________________________________________________________________
batch_normalization_52 (BatchNo (None, 14, 14, 336)  1344        conv2d_31[0][0]                  
__________________________________________________________________________________________________
re_lu_21 (ReLU)                 (None, 14, 14, 336)  0           batch_normalization_52[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_27 (DepthwiseC (None, 14, 14, 336)  3024        re_lu_21[0][0]                   
__________________________________________________________________________________________________
batch_normalization_53 (BatchNo (None, 14, 14, 336)  1344        depthwise_conv2d_27[0][0]        
__________________________________________________________________________________________________
re_lu_22 (ReLU)                 (None, 14, 14, 336)  0           batch_normalization_53[0][0]     
__________________________________________________________________________________________________
concatenate_20 (Concatenate)    (None, 14, 14, 672)  0           re_lu_21[0][0]                   
                                                                 re_lu_22[0][0]                   
__________________________________________________________________________________________________
global_average_pooling2d_3 (Glo (None, 672)          0           concatenate_20[0][0]             
__________________________________________________________________________________________________
reshape_3 (Reshape)             (None, 1, 1, 672)    0           global_average_pooling2d_3[0][0] 
__________________________________________________________________________________________________
conv2d_32 (Conv2D)              (None, 1, 1, 168)    112896      reshape_3[0][0]                  
__________________________________________________________________________________________________
conv2d_33 (Conv2D)              (None, 1, 1, 672)    112896      conv2d_32[0][0]                  
__________________________________________________________________________________________________
activation_3 (Activation)       (None, 1, 1, 672)    0           conv2d_33[0][0]                  
__________________________________________________________________________________________________
multiply_3 (Multiply)           (None, 14, 14, 672)  0           concatenate_20[0][0]             
                                                                 activation_3[0][0]               
__________________________________________________________________________________________________
conv2d_34 (Conv2D)              (None, 14, 14, 56)   37632       multiply_3[0][0]                 
__________________________________________________________________________________________________
batch_normalization_54 (BatchNo (None, 14, 14, 56)   224         conv2d_34[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_28 (DepthwiseC (None, 14, 14, 56)   504         batch_normalization_54[0][0]     
__________________________________________________________________________________________________
batch_normalization_55 (BatchNo (None, 14, 14, 56)   224         depthwise_conv2d_28[0][0]        
__________________________________________________________________________________________________
concatenate_21 (Concatenate)    (None, 14, 14, 112)  0           batch_normalization_54[0][0]     
                                                                 batch_normalization_55[0][0]     
__________________________________________________________________________________________________
add_10 (Add)                    (None, 14, 14, 112)  0           concatenate_21[0][0]             
                                                                 add_9[0][0]                      
__________________________________________________________________________________________________
conv2d_35 (Conv2D)              (None, 14, 14, 336)  37632       add_10[0][0]                     
__________________________________________________________________________________________________
batch_normalization_56 (BatchNo (None, 14, 14, 336)  1344        conv2d_35[0][0]                  
__________________________________________________________________________________________________
re_lu_23 (ReLU)                 (None, 14, 14, 336)  0           batch_normalization_56[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_29 (DepthwiseC (None, 14, 14, 336)  3024        re_lu_23[0][0]                   
__________________________________________________________________________________________________
batch_normalization_57 (BatchNo (None, 14, 14, 336)  1344        depthwise_conv2d_29[0][0]        
__________________________________________________________________________________________________
re_lu_24 (ReLU)                 (None, 14, 14, 336)  0           batch_normalization_57[0][0]     
__________________________________________________________________________________________________
concatenate_22 (Concatenate)    (None, 14, 14, 672)  0           re_lu_23[0][0]                   
                                                                 re_lu_24[0][0]                   
__________________________________________________________________________________________________
depthwise_conv2d_30 (DepthwiseC (None, 7, 7, 672)    16800       concatenate_22[0][0]             
__________________________________________________________________________________________________
batch_normalization_58 (BatchNo (None, 7, 7, 672)    2688        depthwise_conv2d_30[0][0]        
__________________________________________________________________________________________________
global_average_pooling2d_4 (Glo (None, 672)          0           batch_normalization_58[0][0]     
__________________________________________________________________________________________________
reshape_4 (Reshape)             (None, 1, 1, 672)    0           global_average_pooling2d_4[0][0] 
__________________________________________________________________________________________________
conv2d_36 (Conv2D)              (None, 1, 1, 168)    112896      reshape_4[0][0]                  
__________________________________________________________________________________________________
conv2d_37 (Conv2D)              (None, 1, 1, 672)    112896      conv2d_36[0][0]                  
__________________________________________________________________________________________________
activation_4 (Activation)       (None, 1, 1, 672)    0           conv2d_37[0][0]                  
__________________________________________________________________________________________________
multiply_4 (Multiply)           (None, 7, 7, 672)    0           batch_normalization_58[0][0]     
                                                                 activation_4[0][0]               
__________________________________________________________________________________________________
conv2d_38 (Conv2D)              (None, 7, 7, 80)     53760       multiply_4[0][0]                 
__________________________________________________________________________________________________
batch_normalization_59 (BatchNo (None, 7, 7, 80)     320         conv2d_38[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_32 (DepthwiseC (None, 7, 7, 112)    2800        add_10[0][0]                     
__________________________________________________________________________________________________
depthwise_conv2d_31 (DepthwiseC (None, 7, 7, 80)     720         batch_normalization_59[0][0]     
__________________________________________________________________________________________________
batch_normalization_61 (BatchNo (None, 7, 7, 112)    448         depthwise_conv2d_32[0][0]        
__________________________________________________________________________________________________
batch_normalization_60 (BatchNo (None, 7, 7, 80)     320         depthwise_conv2d_31[0][0]        
__________________________________________________________________________________________________
conv2d_39 (Conv2D)              (None, 7, 7, 160)    17920       batch_normalization_61[0][0]     
__________________________________________________________________________________________________
concatenate_23 (Concatenate)    (None, 7, 7, 160)    0           batch_normalization_59[0][0]     
                                                                 batch_normalization_60[0][0]     
__________________________________________________________________________________________________
batch_normalization_62 (BatchNo (None, 7, 7, 160)    640         conv2d_39[0][0]                  
__________________________________________________________________________________________________
add_11 (Add)                    (None, 7, 7, 160)    0           concatenate_23[0][0]             
                                                                 batch_normalization_62[0][0]     
__________________________________________________________________________________________________
conv2d_40 (Conv2D)              (None, 7, 7, 480)    76800       add_11[0][0]                     
__________________________________________________________________________________________________
batch_normalization_63 (BatchNo (None, 7, 7, 480)    1920        conv2d_40[0][0]                  
__________________________________________________________________________________________________
re_lu_25 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_63[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_33 (DepthwiseC (None, 7, 7, 480)    4320        re_lu_25[0][0]                   
__________________________________________________________________________________________________
batch_normalization_64 (BatchNo (None, 7, 7, 480)    1920        depthwise_conv2d_33[0][0]        
__________________________________________________________________________________________________
re_lu_26 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_64[0][0]     
__________________________________________________________________________________________________
concatenate_24 (Concatenate)    (None, 7, 7, 960)    0           re_lu_25[0][0]                   
                                                                 re_lu_26[0][0]                   
__________________________________________________________________________________________________
conv2d_41 (Conv2D)              (None, 7, 7, 80)     76800       concatenate_24[0][0]             
__________________________________________________________________________________________________
batch_normalization_65 (BatchNo (None, 7, 7, 80)     320         conv2d_41[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_34 (DepthwiseC (None, 7, 7, 80)     720         batch_normalization_65[0][0]     
__________________________________________________________________________________________________
batch_normalization_66 (BatchNo (None, 7, 7, 80)     320         depthwise_conv2d_34[0][0]        
__________________________________________________________________________________________________
concatenate_25 (Concatenate)    (None, 7, 7, 160)    0           batch_normalization_65[0][0]     
                                                                 batch_normalization_66[0][0]     
__________________________________________________________________________________________________
add_12 (Add)                    (None, 7, 7, 160)    0           concatenate_25[0][0]             
                                                                 add_11[0][0]                     
__________________________________________________________________________________________________
conv2d_42 (Conv2D)              (None, 7, 7, 480)    76800       add_12[0][0]                     
__________________________________________________________________________________________________
batch_normalization_67 (BatchNo (None, 7, 7, 480)    1920        conv2d_42[0][0]                  
__________________________________________________________________________________________________
re_lu_27 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_67[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_35 (DepthwiseC (None, 7, 7, 480)    4320        re_lu_27[0][0]                   
__________________________________________________________________________________________________
batch_normalization_68 (BatchNo (None, 7, 7, 480)    1920        depthwise_conv2d_35[0][0]        
__________________________________________________________________________________________________
re_lu_28 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_68[0][0]     
__________________________________________________________________________________________________
concatenate_26 (Concatenate)    (None, 7, 7, 960)    0           re_lu_27[0][0]                   
                                                                 re_lu_28[0][0]                   
__________________________________________________________________________________________________
global_average_pooling2d_5 (Glo (None, 960)          0           concatenate_26[0][0]             
__________________________________________________________________________________________________
reshape_5 (Reshape)             (None, 1, 1, 960)    0           global_average_pooling2d_5[0][0] 
__________________________________________________________________________________________________
conv2d_43 (Conv2D)              (None, 1, 1, 240)    230400      reshape_5[0][0]                  
__________________________________________________________________________________________________
conv2d_44 (Conv2D)              (None, 1, 1, 960)    230400      conv2d_43[0][0]                  
__________________________________________________________________________________________________
activation_5 (Activation)       (None, 1, 1, 960)    0           conv2d_44[0][0]                  
__________________________________________________________________________________________________
multiply_5 (Multiply)           (None, 7, 7, 960)    0           concatenate_26[0][0]             
                                                                 activation_5[0][0]               
__________________________________________________________________________________________________
conv2d_45 (Conv2D)              (None, 7, 7, 80)     76800       multiply_5[0][0]                 
__________________________________________________________________________________________________
batch_normalization_69 (BatchNo (None, 7, 7, 80)     320         conv2d_45[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_36 (DepthwiseC (None, 7, 7, 80)     720         batch_normalization_69[0][0]     
__________________________________________________________________________________________________
batch_normalization_70 (BatchNo (None, 7, 7, 80)     320         depthwise_conv2d_36[0][0]        
__________________________________________________________________________________________________
concatenate_27 (Concatenate)    (None, 7, 7, 160)    0           batch_normalization_69[0][0]     
                                                                 batch_normalization_70[0][0]     
__________________________________________________________________________________________________
add_13 (Add)                    (None, 7, 7, 160)    0           concatenate_27[0][0]             
                                                                 add_12[0][0]                     
__________________________________________________________________________________________________
conv2d_46 (Conv2D)              (None, 7, 7, 480)    76800       add_13[0][0]                     
__________________________________________________________________________________________________
batch_normalization_71 (BatchNo (None, 7, 7, 480)    1920        conv2d_46[0][0]                  
__________________________________________________________________________________________________
re_lu_29 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_71[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_37 (DepthwiseC (None, 7, 7, 480)    4320        re_lu_29[0][0]                   
__________________________________________________________________________________________________
batch_normalization_72 (BatchNo (None, 7, 7, 480)    1920        depthwise_conv2d_37[0][0]        
__________________________________________________________________________________________________
re_lu_30 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_72[0][0]     
__________________________________________________________________________________________________
concatenate_28 (Concatenate)    (None, 7, 7, 960)    0           re_lu_29[0][0]                   
                                                                 re_lu_30[0][0]                   
__________________________________________________________________________________________________
conv2d_47 (Conv2D)              (None, 7, 7, 80)     76800       concatenate_28[0][0]             
__________________________________________________________________________________________________
batch_normalization_73 (BatchNo (None, 7, 7, 80)     320         conv2d_47[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_38 (DepthwiseC (None, 7, 7, 80)     720         batch_normalization_73[0][0]     
__________________________________________________________________________________________________
batch_normalization_74 (BatchNo (None, 7, 7, 80)     320         depthwise_conv2d_38[0][0]        
__________________________________________________________________________________________________
concatenate_29 (Concatenate)    (None, 7, 7, 160)    0           batch_normalization_73[0][0]     
                                                                 batch_normalization_74[0][0]     
__________________________________________________________________________________________________
add_14 (Add)                    (None, 7, 7, 160)    0           concatenate_29[0][0]             
                                                                 add_13[0][0]                     
__________________________________________________________________________________________________
conv2d_48 (Conv2D)              (None, 7, 7, 480)    76800       add_14[0][0]                     
__________________________________________________________________________________________________
batch_normalization_75 (BatchNo (None, 7, 7, 480)    1920        conv2d_48[0][0]                  
__________________________________________________________________________________________________
re_lu_31 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_75[0][0]     
__________________________________________________________________________________________________
depthwise_conv2d_39 (DepthwiseC (None, 7, 7, 480)    4320        re_lu_31[0][0]                   
__________________________________________________________________________________________________
batch_normalization_76 (BatchNo (None, 7, 7, 480)    1920        depthwise_conv2d_39[0][0]        
__________________________________________________________________________________________________
re_lu_32 (ReLU)                 (None, 7, 7, 480)    0           batch_normalization_76[0][0]     
__________________________________________________________________________________________________
concatenate_30 (Concatenate)    (None, 7, 7, 960)    0           re_lu_31[0][0]                   
                                                                 re_lu_32[0][0]                   
__________________________________________________________________________________________________
global_average_pooling2d_6 (Glo (None, 960)          0           concatenate_30[0][0]             
__________________________________________________________________________________________________
reshape_6 (Reshape)             (None, 1, 1, 960)    0           global_average_pooling2d_6[0][0] 
__________________________________________________________________________________________________
conv2d_49 (Conv2D)              (None, 1, 1, 240)    230400      reshape_6[0][0]                  
__________________________________________________________________________________________________
conv2d_50 (Conv2D)              (None, 1, 1, 960)    230400      conv2d_49[0][0]                  
__________________________________________________________________________________________________
activation_6 (Activation)       (None, 1, 1, 960)    0           conv2d_50[0][0]                  
__________________________________________________________________________________________________
multiply_6 (Multiply)           (None, 7, 7, 960)    0           concatenate_30[0][0]             
                                                                 activation_6[0][0]               
__________________________________________________________________________________________________
conv2d_51 (Conv2D)              (None, 7, 7, 80)     76800       multiply_6[0][0]                 
__________________________________________________________________________________________________
batch_normalization_77 (BatchNo (None, 7, 7, 80)     320         conv2d_51[0][0]                  
__________________________________________________________________________________________________
depthwise_conv2d_40 (DepthwiseC (None, 7, 7, 80)     720         batch_normalization_77[0][0]     
__________________________________________________________________________________________________
batch_normalization_78 (BatchNo (None, 7, 7, 80)     320         depthwise_conv2d_40[0][0]        
__________________________________________________________________________________________________
concatenate_31 (Concatenate)    (None, 7, 7, 160)    0           batch_normalization_77[0][0]     
                                                                 batch_normalization_78[0][0]     
__________________________________________________________________________________________________
add_15 (Add)                    (None, 7, 7, 160)    0           concatenate_31[0][0]             
                                                                 add_14[0][0]                     
__________________________________________________________________________________________________
conv2d_52 (Conv2D)              (None, 7, 7, 960)    153600      add_15[0][0]                     
__________________________________________________________________________________________________
batch_normalization_79 (BatchNo (None, 7, 7, 960)    3840        conv2d_52[0][0]                  
__________________________________________________________________________________________________
re_lu_33 (ReLU)                 (None, 7, 7, 960)    0           batch_normalization_79[0][0]     
__________________________________________________________________________________________________
global_average_pooling2d_7 (Glo (None, 960)          0           re_lu_33[0][0]                   
__________________________________________________________________________________________________
reshape_7 (Reshape)             (None, 1, 1, 960)    0           global_average_pooling2d_7[0][0] 
__________________________________________________________________________________________________
conv2d_53 (Conv2D)              (None, 1, 1, 1280)   1228800     reshape_7[0][0]                  
__________________________________________________________________________________________________
batch_normalization_80 (BatchNo (None, 1, 1, 1280)   5120        conv2d_53[0][0]                  
__________________________________________________________________________________________________
re_lu_34 (ReLU)                 (None, 1, 1, 1280)   0           batch_normalization_80[0][0]     
__________________________________________________________________________________________________
flatten (Flatten)               (None, 1280)         0           re_lu_34[0][0]                   
__________________________________________________________________________________________________
dense (Dense)                   (None, 1000)         1281000     flatten[0][0]                    
==================================================================================================
Total params: 5,202,624
Trainable params: 5,178,096
Non-trainable params: 24,528

5.6 模型结构图

image-20220905222617954

References

https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnet_tensorflow/ghostnet.py

GhostNet: More Features from Cheap Operations

神经网络小记录58--Keras GhostNet模型的复现详解

GhostNet 代码复现,网络解析,附TensorFlow完整代码,(这个大佬的代码有几处写的不对,应该是失误了)

目录
相关文章
|
机器学习/深度学习 编解码 BI
RegNet架构复现--CVPR2020
在这项工作中,我们**提出了一种新的网络设计范式**。我们的目标是帮助促进对网络设计的理解,并发现跨环境通用的设计原则。我们不是专注于设计单个网络实例,而是设计参数化网络群体的网络设计空间。整个过程类似于经典的网络手动设计,但提升到了设计空间级别。使用我们的方法,我们探索了网络设计的结构方面,并**得出了一个由简单、规则的网络组成的低维设计空间,我们称之为** ==RegNet==。
1398 0
RegNet架构复现--CVPR2020
|
机器学习/深度学习 编解码 TensorFlow
MobileNetV3架构解析与代码复现
MobileNet模型基于深度可分离卷积,这是一种分解卷积的形式,将标准卷积分解为深度卷积和`1*1`的点卷积。对于MobileNet,深度卷积将单个滤波器应用于每个输入通道,然后,逐点卷积应用`1*1`卷积将输出与深度卷积相结合。
1141 0
MobileNetV3架构解析与代码复现
|
机器学习/深度学习 编解码 TensorFlow
MnasNet架构解析与复现-神经架构搜索
为移动设备设计卷积神经网络 (CNN) 具有挑战性,因为移动模型需要小而快,但仍要准确。尽管在所有维度上都致力于设计和改进移动 CNN,但当需要考虑如此多的架构可能性时,很难手动平衡这些权衡。在本文中,我们提出了一种**自动移动神经架构搜索 (MNAS) 方法**,该方法明确地将模型延迟纳入主要目标,以便搜索可以识别出在准确性和延迟之间取得良好折衷的模型。与之前的工作不同,延迟是通过另一个通常不准确的代理(例如 FLOPS)来考虑的,我们的方法通过在手机上执行模型来直接测量现实世界的推理延迟。为了进一步在灵活性和搜索空间大小之间取得适当的平衡,我们**提出了一种新颖的分解层次搜索空间,它鼓励整
570 0
MnasNet架构解析与复现-神经架构搜索
|
机器学习/深度学习 TensorFlow API
EffiecientNetV2架构复现--CVPR2021
这篇文章介绍了EfficientNetV2,与以前的模型相比,它具有更快的训练速度和更好的参数效率。为了开发这些模型,我们结合使用训练感知神经架构搜索和缩放,共同优化训练速度和参数效率。这些模型是从富含新操作(如 Fused-MBConv)的搜索空间中搜索的。我们的实验表明,EfficientNetV2 模型的训练速度比最先进的模型快得多,同时体积缩小了 6.8 倍。
529 0
EffiecientNetV2架构复现--CVPR2021
|
编解码 数据挖掘 算法框架/工具
ResNet-RS架构复现--CVPR2021
我们的工作重新审视了规范的 ResNet (He et al., 2015),并研究了这三个方面,以试图解开它们。也许令人惊讶的是,我们发现训练和扩展策略可能比架构变化更重要,而且由此产生的 ResNet 与最近最先进的模型相匹配。**我们展示了表现最佳的缩放策略取决于训练方案,并提供了两种新的缩放策略:(1)在可能发生过度拟合的情况下缩放模型深度(否则宽度缩放更可取); (2) 提高图像分辨率的速度比之前推荐的要慢(Tan & Le,2019)**。使用改进的训练和扩展策略,我们设计了一系列 ResNet 架构 **ResNet-RS**,它比 TPU 上的 EfficientNets 快
505 0
ResNet-RS架构复现--CVPR2021
|
28天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
45 3
|
2月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
27天前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
153 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
29天前
|
设计模式 负载均衡 监控
探索微服务架构下的API网关设计
在微服务的大潮中,API网关如同一座桥梁,连接着服务的提供者与消费者。本文将深入探讨API网关的核心功能、设计原则及实现策略,旨在为读者揭示如何构建一个高效、可靠的API网关。通过分析API网关在微服务架构中的作用和挑战,我们将了解到,一个优秀的API网关不仅要处理服务路由、负载均衡、认证授权等基础问题,还需考虑如何提升系统的可扩展性、安全性和可维护性。文章最后将提供实用的代码示例,帮助读者更好地理解和应用API网关的设计概念。
63 8

热门文章

最新文章