python机器学习之基于内容的推荐算法(附源码)

简介: python机器学习之基于内容的推荐算法(附源码)

推荐算法相信大家都不陌生,日常生活的各种APP都会根据你的喜好和特征来给你推荐,接下来详细介绍一下其中的基于内容的推荐算法


基于内容的模式起源于信息检索领域,这种模式是以物品的内容为基础,推荐的原理是分析系统的历史数据,提取对象的内容特种和用户的兴趣偏好。


这里关键的环节是计算被推荐对象的内容特征和用户模型的兴趣特征二者之间的相似性。基于内容的推荐算法不需要大量的用户数据,广泛使用于大量文本信息的场合。


问题描述:你经常到一家店去吃麻辣香锅,老板开发了一个菜品推荐程序,老板先整理出店里各种菜品的口味记录到数据文件中,在你点菜时,程序分析出你的历史评价得知你喜欢的菜品,并据此推荐你可能喜欢的菜品


数据集请点赞关注收藏后私信博主要


问题分析:推荐算法使用的是各个菜品的口味特征为文本类型,可以考虑构建taste特征的tifdf矩阵,对文本信息向量化处理,然后使用距离度量方法,计算相似度,然后推荐。


数据如下

1666430253201.jpg

结果如下

1666430260646.jpg

可以看出,对于你评分较高的芹菜,系统能够推荐出相似度较高的菜品


源码如下

import pandas as pd
from numpy import *
from sklearn.feature_extraction.text import  TfidfVectorizer
food=pd.read_csv(r'hot-spicy pot.csv')
print(food.head())
print(food['taste'].head())
from sklearn.metrics.pairwise import  pairwise_distances
tfidf=TfidfVectorizer(stop_words='english')
tfidf_matrix=tfidf.fit_transform(food['taste'])
print(tfidf_matrix.shape)
cosine_sim=pairwise_distances(tfidf_matrix,metric='cosine')
def content_based_recommendation(name,cosine_sim=cosine_sim):
    idx=indices[name]
    sim_scores=list(enumerate(cosine_sim[idx]))
    sim_scores=sorted(sim_scores,key=lambda x:x[1])
    sim_scores=sim_scores[1:11]
    food_indices=[i[0]for i in sim_scores]
    return food['name'].iloc[food_indices]
indices=pd.Series(food.index,index=food['name']).drop_duplicates()
result=content_based_recommendation("celery")
print("推荐菜品结果如下")
print(result)
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
77 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
21天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
135 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
9天前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
35 20
|
3天前
|
存储 人工智能 算法
深度解密:员工飞单需要什么证据之Python算法洞察
员工飞单是企业运营中的隐性风险,严重侵蚀公司利润。为应对这一问题,精准搜集证据至关重要。本文探讨如何利用Python编程语言及其数据结构和算法,高效取证。通过创建Transaction类存储交易数据,使用列表管理订单信息,结合排序算法和正则表达式分析交易时间和聊天记录,帮助企业识别潜在的飞单行为。Python的强大功能使得从交易流水和沟通记录中提取关键证据变得更加系统化和高效,为企业维权提供有力支持。
|
11天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
41 14
|
2天前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
14 3
|
17天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
24天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
266 14

热门文章

最新文章