python 实现k-means聚类算法 银行客户分组画像实战(超详细,附源码)

简介: python 实现k-means聚类算法 银行客户分组画像实战(超详细,附源码)

k-means具体是什么这里就不再赘述,详情可以参见我这篇博客


k-means


问题描述:银行对客户信息进行采集,获得了200位客户的数据,客户特征包括以下四个1:社保号码 2:姓名  3:年龄 4:存款数量 使用k-means算法对客户进行分组,生成各类型客户的特点画像


数据集请点赞关注收藏后私信博主要


肘部折线图如下  tips:利用肘部方法可以找到最佳的簇数,即看那个点之后逐渐收敛,则那个点为最优的簇数


由下图可以得知k=3或k=4时比较好

1666430149255.jpg

分类出的画像图如下,可以清楚的看出不同客户的画像

1666430163425.jpg





源码如下

#-*-coding:utf-8-*-
import  numpy  as np
import  matplotlib.pyplot as plt
import pandas as pd
import matplotlib; matplotlib.use('TkAgg')
dataset=pd.read_csv(r'Customer_Info.csv')
print(dataset)
X=dataset.iloc[:,[4,3]].values
from sklearn.cluster import  KMeans
sumDs=[]
for i in range(1,11):
    kmeans=KMeans(n_clusters=i)
    kmeans.fit(X)
    sumDs.append(kmeans.inertia_)
    print(kmeans.inertia_)
plt.plot(range(1,11),sumDs)
plt.title('the Elbow method')
plt.xlabel('number of cluster k')
plt.ylabel('SSE')
plt.show()
kmenas1=KMeans(n_clusters=3,init='k-means++',max_iter=300,n_init=10,random_state=0)
y_kmeans=kmenas1.fit_predict(X)
plt.scatter(X[y_kmeans==0,0],X[y_kmeans==0,1],s=100,marker='^',c='red',label='poor')
plt.scatter(X[y_kmeans==2,0],X[y_kmeans==2,1],s=100,marker='o',c='green',label='middle')
plt.scatter(X[y_kmeans==1,0],X[y_kmeans==1,1],s=100,marker='*',c='blue',label='rich')
plt.scatter(kmenas1.cluster_centers_[:,0],kmenas1.cluster_centers_[:,1],s=250,c='yellow',label='Centroids')
plt.title('clusters of customer info')
plt.xlabel('deposit')
plt.ylabel('age')
plt.legend()
plt.show()


相关文章
|
1天前
|
数据采集 存储 数据挖掘
Python网络爬虫实战:抓取并分析网页数据
使用Python的`requests`和`BeautifulSoup`,本文演示了一个简单的网络爬虫,抓取天气网站数据并进行分析。步骤包括发送HTTP请求获取HTML,解析HTML提取温度和湿度信息,以及计算平均温度。注意事项涉及遵守robots.txt、控制请求频率及处理动态内容。此基础爬虫展示了数据自动收集和初步分析的基础流程。【6月更文挑战第14天】
43 9
|
1天前
|
数据采集 数据可视化 数据挖掘
数据挖掘实战:使用Python进行数据分析与可视化
在大数据时代,Python因其强大库支持和易学性成为数据挖掘的首选语言。本文通过一个电商销售数据案例,演示如何使用Python进行数据预处理(如处理缺失值)、分析(如销售额时间趋势)和可视化(如商品类别销售条形图),揭示数据背后的模式。安装`pandas`, `numpy`, `matplotlib`, `seaborn`后,可以按照提供的代码步骤,从读取CSV到数据探索,体验Python在数据分析中的威力。这只是数据科学的入门,更多高级技术等待发掘。【6月更文挑战第14天】
25 11
|
2天前
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘实战:Python在金融数据分析中的应用案例
Python在金融数据分析中扮演关键角色,用于预测市场趋势和风险管理。本文通过案例展示了使用Python库(如pandas、numpy、matplotlib等)进行数据获取、清洗、分析和建立预测模型,例如计算苹果公司(AAPL)股票的简单移动平均线,以展示基本流程。此示例为更复杂的金融建模奠定了基础。【6月更文挑战第13天】
15 3
|
3天前
|
数据采集 前端开发 Python
Python3网络开发实战读后感
Python3网络开发实战读后感
|
4天前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
4天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
4天前
|
机器学习/深度学习 算法 数据库
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
|
4天前
|
机器学习/深度学习 算法 数据可视化
【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)
【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)
|
4天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
|
4天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测