数学建模国赛:python机器学习基础之数据归一化、去除空值

简介: 数学建模国赛:python机器学习基础之数据归一化、去除空值

首先我们要明确为什么要将数据归一化或者说是标准化,因为不同数据范围相差太大,不好比较,所以要消除不同量纲单位带来的影响,归一化后各数据指标处于同一数量级,适合进行综合对比评价


想要数据集或者有什么不明白的可以点赞关注后私信答主


归一化一般是把数据调整到[0,1]范围内


每一列处理公式是 (x-min)/(max-min)max min为那一列的最大和最小值


原数据如下:

1666425358669.jpg

归一化后数据如下:

1666425373956.jpg

代码如下

from sklearn import  preprocessing
import pandas as pd
import  numpy as np
def MaxMinNormalizetion(x):
    shapeX=x.shape
    rows=shapeX[0]
    cols=shapeX[1]
    headers=list(x)
    result=pd.DataFrame(columns=headers)
    for i in range(0,rows,1):
        dict1={}
        dict1[headers[0]]=x['No'][i]
        for j in range(1,cols,1):
            maxcol=x[headers[j]].max()
            mincol=x[headers[j]].min()
            val=(x.iloc[i,j]-mincol)/(maxcol-mincol)#一般是(x-min)/(max-min)进行归一化处理
            dict1[headers[j]]=val
        result=result.append(dict1,ignore_index=True)
    return result
data1=pd.read_csv(r'CatInfo.csv')
print('original data\n',data1)
newdata=MaxMinNormalizetion(data1)
print('归一化的数据\n',newdata)


但是眼尖的同学可以发现里面是有空值的 这对我们进行后续的运算是非常不利的 我们要把他消除

1666425401485.jpg

消除空值后如下

1666425411862.jpg

代码如下

from sklearn import  preprocessing
import pandas as pd
import  numpy as np
print("去除空值并且归一化处理")
y=data1.dropna(axis=0).iloc[:,1:]#去除空值
min_max_scaler=preprocessing.MinMaxScaler()
x_minmax=min_max_scaler.fit_transform(y)
print(x_minmax)


想要数据集或者有什么不明白的可以点赞关注后私信答主


相关文章
|
7月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
254 7
|
5月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
797 12
Scikit-learn:Python机器学习的瑞士军刀
|
8月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
Python与机器学习:使用Scikit-learn进行数据建模
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
7月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
11月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
11月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
386 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
167 0
|
11月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
355 0
|
11月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练

热门文章

最新文章

推荐镜像

更多