【简单算法】1.两数之和,给定整数数组和目标值,找出数组中2数之和等于目标值的元素

简介: 【简单算法】1.两数之和,给定整数数组和目标值,找出数组中2数之和等于目标值的元素

接触了代码,那么算法始终是绕不开的一个重点。


算法对于开发人员,在日常之中的作用很大,但是对于测试人员来说,实际编码中用到的似乎不是很多。


不过,现在大厂的测试开发的面试,算法是必考的,而且这也的确是你的代码功底的一项重要体现,学学没坏处。


1268169-20201217142744844-1876337476.png


关于算法的基础知识,之前自己也买过书,但是学习的断断续续的,练习刷题就更加稀少了。


所以,打算日后做一个【简单算法】的记录:


  • 第一,是为了梳理解题思路,加深巩固。
  • 第二,在学习解题的过程中,将薄弱的代码环节、算法基础补全。
  • 第三,算是对算法练习的一个督促。


题目来自LeetCode传送门,有兴趣的童鞋可以到上面刷题练习。


一、题目:两数之和


描述


给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。


你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。


示例


给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]


解题


突然有了考试做题的感觉,我觉得首先题目要先审清楚,然后自己尝试用自己已有的知识去解决。


实在做不出来,也别泄气,算法道路一定是曲折的,起码对我来说是这样,大佬除外。

另外,不管做不做出来,都要去学习下示例解法,学习解题思路,从中收获更多。


1. 解法1


我自己尝试着做,这题因为属于简单难度,我用for循环的知识进行了暴力破解,代码以为例:


def twoSum(nums, target):
    for i in range(len(nums)):
        for j in range(i+1, len(nums)):
            if nums[i] + nums[j] == target:
                return [i, j]


其实就是2次循环,最外层的循环,从列表第一个开始遍历,直到最后一个元素,长度就是len(nums)


因为题目中说,单元素不能使用两次,所以内层的循环,就从i 之后也就是i+1开始,直到最后一个元素。


拿到了2个数,就进行相加操作,与target进行比较,如果相等,就返回出这2个元素的下标。


运行一下:


def twoSum(nums, target):
    for i in range(len(nums)):
        for j in range(i+1, len(nums)):
            if nums[i] + nums[j] == target:
                return [i, j]
if __name__ == "__main__":
    print(twoSum2([2, 15, 11, 7], 9))
-------------结果----------------------
D:\Programs\Python\Python36\python.exe D:/练习/leecode/two_sum.py
[0, 3]
Process finished with exit code 0


这题虽然我做出来,但是这个解法并不好,如果遇到一个元素很多的列表,并且最后的2个值 之和 等于目标值,那么这种情况下,

数组里的任意2个元素都要匹配比较一次。


时间复杂度就为:O(N^2)。

空间复杂度还好,因为没去去开辟额外的空间去计算,所以是:O(1)。

关于复杂度的分析,后面单独写一篇介绍。


2. 解法2


上面的解法缺点就是在最坏的时候,数组里的任意2个元素都要匹配比较一次,那么就要来解决这个问题。


换个思路来想,遍历列表的中的元素x,如果列表中存在 target-x,那么这2个数的下标就是最终我们要的结果。


官方的建议解法用了哈希表,对于key-value这样的存储形式,x跟它的下标是对应的,这样一来,找到target-x的时间复杂度就变成了O(1)。


所以新的解法就是:


def twoSum2(nums, target):
    hashtable = dict()
    for i, num in enumerate(nums):
        if target - num in hashtable:
            return [hashtable[target - num], i]
        hashtable[nums[i]] = i
    return []



在每一次的遍历中,就可以用目标值 target —— 当前元素 num,判断这个值 在不在字典里。


这里用到的是 字典 in 操作符,用于判断键是否存在于字典中。


如果在的话,那就返回 字典里的 元素以及,下标。


因为刚开始循环的的时候,字典里没数据,所以当每次循环后,我们要把这次循环的元素跟它的下标 分别 作为 key和value放到字典里去。


可以加个打印看下 字典的操作过程:


def twoSum2(nums, target):
    hashtable = dict()
    for i, num in enumerate(nums):
        if target - num in hashtable:
            return [hashtable[target - num], i]
        hashtable[nums[i]] = i
        print(hashtable)
    return []
if __name__ == "__main__":
    print(twoSum2([4, 15, 3, 7, 2], 9))
=============================结果==============================
D:\Programs\Python\Python36\python.exe D:/练习/leecode/two_sum.py
{4: 0}
{4: 0, 15: 1}
{4: 0, 15: 1, 3: 2}
{4: 0, 15: 1, 3: 2, 7: 3}
[3, 4]
Process finished with exit code 0


最终,分析解法2的复杂度:


时间复杂度—— O(N),N 是列表中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。

空间复杂度—— O(N),其中 N 是数组中的元素数量。主要是哈希表的开销,在空间上的消耗。


其实也不能说解法1就是最烂的,因为算法没有最好的算法,只有最适合的算法。

随着需求在空间和时间的取舍的不同,具体决定使用哪种算法也是不同的。

相关文章
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
30 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
1月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
21 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
3月前
|
人工智能 算法
第一周算法设计与分析:C : 200和整数对之间的情缘
这篇文章介绍了解决算法问题"200和整数对之间的情缘"的方法,通过统计数组中每个数模200的余数,并计算每个同余类中数的组合数来找出所有满足条件的整数对(i, j),使得\( A_i - A_j \)是200的整数倍。
|
3月前
|
存储 算法 Java
深入算法基础二分查找数组
文章深入学习了二分查找算法的基础,通过实战例子详细解释了算法的逻辑流程,强调了确定合法搜索边界的重要性,并提供了Java语言的代码实现。
深入算法基础二分查找数组
|
3月前
|
算法
【Azure Developer】完成算法第4版书中,第一节基础编码中的数组函数 histogrm()
【Azure Developer】完成算法第4版书中,第一节基础编码中的数组函数 histogrm()
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。