Python-OpenCV图像处理-08-边沿保留过滤(EPF)

简介: Python-OpenCV图像处理-08-边沿保留过滤(EPF)

进行边缘保留滤波通常用到两个方法:高斯双边滤波和均值迁移滤波

应用比如比较low的应用就应该是使用这个相当于做了个磨皮滤镜

贴出代码吧:

importcv2ascv#边缘保留滤波(EPF )#高斯双边 高斯模糊原理defbi_demo(image):
dst=cv.pyrMeanShiftFiltering(image, 0,100,15)
cv.imshow("bi_demo",dst)
#  均值迁移defshift_demo(image):
dst=cv.pyrMeanShiftFiltering(image,10,50)
cv.imshow("shift_demo",dst)
src=cv.imread("C:\\Users\\william\\Pictures\\go.jpg")
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE)
cv.imshow("input image",src)
bi_demo(src)
shift_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

部分原理见网友大佬博文:https://www.cnblogs.com/FHC1994/p/9097231.html

这里的函数原型也是贴的这个大佬的。。比较无耻

1.双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波


2.双边滤波函数原型:bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst

src参数表示待处理的输入图像。

d参数表示在过滤期间使用的每个像素邻域的直径。如果输入d非0,则sigmaSpace由d计算得出,如果sigmaColor没输入,则sigmaColor由sigmaSpace计算得出。

sigmaColor参数表示色彩空间的标准方差,一般尽可能大。较大的参数值意味着像素邻域内较远的颜色会混合在一起,从而产生更大面积的半相等颜色。

sigmaSpace参数表示坐标空间的标准方差(像素单位),一般尽可能小。参数值越大意味着只要它们的颜色足够接近,越远的像素都会相互影响。当d > 0时,它指定邻域大小而不考虑sigmaSpace。 否则,d与sigmaSpace成正比。


3.均值漂移pyrMeanShiftFiltering函数原型:pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst

src参数表示输入图像,8位,三通道图像。

sp参数表示漂移物理空间半径大小。

sr参数表示漂移色彩空间半径大小。

dst参数表示和源图象相同大小、相同格式的输出图象。

maxLevel参数表示金字塔的最大层数。

termcrit参数表示漂移迭代终止条件。


目录
相关文章
|
4月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
183 7
|
10天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
49 20
|
5月前
|
Python
python保存两位小数的几种方法,python2保留小数
python保存两位小数的几种方法,python2保留小数
187 2
|
19天前
|
机器学习/深度学习 算法 数据可视化
Python的计算机视觉与图像处理
本文介绍了Python在计算机视觉和图像处理领域的应用,涵盖核心概念、算法原理、最佳实践及应用场景。重点讲解了OpenCV、NumPy、Pillow和Matplotlib等工具的使用,并通过代码实例展示了图像读写、处理和可视化的方法。实际应用包括自动驾驶、人脸识别、物体检测等。未来趋势涉及深度学习、边缘计算和量子计算,同时也讨论了数据不足、模型解释性和计算资源等挑战。
|
2月前
|
计算机视觉 开发者 Python
利用Python进行简单的图像处理
【10月更文挑战第36天】本文将引导读者理解如何使用Python编程语言和其强大的库,如PIL和OpenCV,进行图像处理。我们将从基本的图像操作开始,然后逐步深入到更复杂的技术,如滤波器和边缘检测。无论你是编程新手还是有经验的开发者,这篇文章都将为你提供新的视角和技能,让你能够更好地理解和操作图像数据。
WK
|
3月前
|
Python
Python保留关键字
Python 的保留关键字是语言中具有特殊意义的单词,不能用作变量名、函数名或类名等标识符。Python 3.x 版本中的保留关键字包括 `False`、`await`、`else`、`import` 等共 35 个。使用这些关键字作为标识符会导致语法错误。随着 Python 版本的更新,保留关键字可能会有所变化。
WK
71 6
|
3月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
141 2
|
3月前
|
算法 数据可视化 计算机视觉
Python中医学图像处理常用的库
在Python中,医学图像处理常用的库包括:ITK(及其简化版SimpleITK)、3D Slicer、Pydicom、Nibabel、MedPy、OpenCV、Pillow和Scikit-Image。这些库分别擅长图像分割、配准、处理DICOM和NIfTI格式文件、图像增强及基础图像处理等任务。选择合适的库需根据具体需求和项目要求。
123 0
|
3月前
|
数据挖掘 计算机视觉 Python
基于Python的简单图像处理技术
【10月更文挑战第4天】在数字时代,图像处理已成为不可或缺的技能。本文通过Python语言,介绍了图像处理的基本方法,包括图像读取、显示、编辑和保存。我们将一起探索如何使用PIL库进行图像操作,并通过实际代码示例加深理解。无论你是编程新手还是图像处理爱好者,这篇文章都将为你打开一扇新窗,让你看到编程与创意结合的无限可能。
WK
|
5月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
60 4