我们能做出来数据库吗?

简介: 开源分析数据库ClickHouse以快著称,真的如此吗?我们通过对比测试来验证一下。

开源分析数据库ClickHouse以快著称,真的如此吗?我们通过对比测试来验证一下。


ClickHouse vs Oracle


先用ClickHouse(简称CH)、Oracle数据库(简称ORA)一起在相同的软硬件环境下做对比测试。测试基准使用国际广泛认可的TPC-H,针对8张表,完成22条SQL语句定义的计算需求(Q1到Q22)。测试采用单机12线程,数据总规模100G。TPC-H对应的SQL都比较长,这里就不详细列出了。


Q1是简单的单表遍历计算分组汇总,对比测试结果如下:


微信图片_20221009235400.png


CH计算Q1的表现要好于ORA,说明CH的列式存储做得不错,单表遍历速度很快。而ORA主要吃亏在使用了行式存储,明显要慢得多了。


但是,如果我们加大计算复杂度,CH的表现怎么样呢?继续看TPC-H的Q2、Q3、Q7,测试结果如下:


微信图片_20221009235412.png


计算变得复杂之后,CH性能出现了明显的下降。Q2涉及数据量较少,列存作用不大,CH性能和ORA几乎一样。Q3数据量较大,CH占了列存的便宜后超过了ORA。Q7数据也较大,但是计算复杂,CH性能还不如ORA。


做复杂计算快不快,主要看性能优化引擎做的好不好。CH的列存占据了巨大的存储优势,但竟然被ORA用行式存储赶上,这说明CH的算法优化能力远不如ORA。


TPC-H的Q8是更复杂一些的计算,子查询中有多表连接,CH跑了2000多秒还没有出结果,应该是卡死了,ORA跑了192秒。Q9在Q8的子查询中增加了like,CH直接报内存不足的错误了,ORA跑了234秒。其它还有些复杂运算是CH跑不出来的,就没法做个总体比较了。


CH和ORA都基于SQL语言,但是ORA能优化出来的语句,CH却跑不出来,更证明CH的优化引擎能力比较差。


坊间传说,CH只擅长做单表遍历运算,有关联运算时甚至跑不过MySQL,看来并非虚妄胡说。想用CH的同学要掂量一下了,这种场景到底能有多大的适应面?


esProc SPL登场


开源esProc SPL也是以高性能作为宣传点,那么我们再来比较一下。


仍然是跑TPC-H来看 :


微信图片_20221009235418.png


Q2、Q3、Q7这些较复杂的运算,SPL比CH和ORA跑的都快。CH跑不出结果的Q8、Q9,SPL分别跑了37秒和68秒,也比ORA快。原因在于SPL可以采用更优的算法,其计算复杂度低于被ORA优化过的SQL,更远低于CH执行的SQL,再加上列存,最终是用Java开发的SPL跑赢了C++实现的CH和ORA。


大概可以得到结论,esProc SPL无论做简单计算,还是复杂计算性能都非常好。


不过,Q1这种简单运算,CH比SPL还是略胜了一筹。似乎可以进一步证明前面的结论,即CH特别擅长简单遍历运算。


且慢,SPL还有秘密武器。


SPL的企业版中提供了列式游标机制,我们再来对比测试一下:在8亿条数据量下,做最简单的分组汇总计算,对比SPL(使用列式游标)和CH的性能。(采用的机器配置比前面做TPC-H测试时略低,因此测出的结果不同,不过这里主要看相对值。)


简单分组汇总对应CH的SQL语句是:


SQL1:


SELECT mod(id, 100) AS Aid, max(amount) AS Amax
FROM test.t
GROUP BY mod(id, 100)

这个测试的结果是下图这样:


微信图片_20221009235424.png


SPL使用列式游标机制之后,简单遍历分组计算的性能也和CH一样了。如果在TPC-H的Q1测试中也使用列式游标,SPL也会达到和CH同样的性能。


测试过程中发现,8亿条数据存成文本格式占用磁盘15G,在CH中占用5.4G,SPL占用8G。说明CH和SPL都采用了压缩存储,CH的压缩比更高些,也进一步证明CH的存储引擎做得确实不错。不过,SPL也可以达到和CH同样的性能,这说明SPL存储引擎和算法优化做得都比较好,高性能计算能力更加均衡。


当前版本的SPL是用Java写的,Java读数后生成用于计算的对象的速度很慢,而用C++开发的CH则没有这个问题。对于复杂的运算,读数时间占比不高,Java生成对象慢造成的拖累还不明显;而对于简单的遍历运算,读数时间占比很高,所以前面测试中SPL就会比CH更慢。列式游标优化了读数方案,不再生成一个个小对象,使对象生成次数大幅降低,这时候就能把差距拉回来了。单纯从存储本身看,SPL和CH相比并没有明显的优劣之分。


接下来再看常规TopN的对比测试,CH的SQL是:


SQL2:


SELECT * FROM test.t ORDER BY amount DESC LIMIT 100

对比测试结果是这样的:


微信图片_20221009235428.png


单看CH的SQL2,常规TopN的计算方法是全排序后取出前N条数据。数据量很大时,如果真地做全排序,性能会非常差。SQL2的测试结果说明,CH应该和SPL一样做了优化,没有全排序,所以两者性能都很快,SPL稍快一些。


也就是说,无论简单运算还是复杂运算,esProc SPL都能更胜一筹。如果你想学习源代码的话,也是可以的。SPL源代码


进一步的差距


差距还不止于此。


正如前面所说,CH和ORA使用SQL语言,都是基于关系模型的,所以都面临SQL优化的问题。TPC-H测试证明,ORA能优化的一些场景CH却优化不了,甚至跑不出结果。那么,如果面对一些ORA也不会优化的计算,CH就更不会优化了。比如说我们将SQL1的简单分组汇总,改为两种分组汇总结果再连接,CH的SQL写出来大致是这样:


SQL3:


SELECT *
FROM (
SELECT mod(id, 100) AS Aid, max(amount) AS Amax
FROM test.t
GROUP BY mod(id, 100)
) A
JOIN (
SELECT floor(id / 200000) AS Bid, min(amount) AS Bmin
FROM test.t
GROUP BY floor(id / 200000)
) B
ON A.Aid = B.Bid

这种情况下,对比测试的结果是CH的计算时间翻倍,SPL则不变:


微信图片_20221009235433.png


这是因为SPL不仅使用了列式游标,还使用了遍历复用机制,能在一次遍历过程中计算出多种分组结果,可以减少很多硬盘访问量。CH使用的SQL无法写出这样的运算,只能靠CH自身的优化能力了。而CH算法优化能力又很差,其优化引擎在这个测试中没有起作用,只能遍历两次,所以性能下降了一倍。


SPL实现遍历复用的代码很简单,大致是这样:



A

B

1

  =file("topn.ctx").open().cursor@mv(id,amount)

2

cursor A1 =A2.groups(id%100:Aid;max(amount):Amax)

3

cursor =A3.groups(id\200000:Bid;min(amount):Bmin)

4

=A2.join@i(Aid,A3:Bid,Bid,Bmin)


再将SQL2常规TopN计算,调整为分组后求组内TopN。对应SQL是:


SQL4:
SELECT
   gid,
   groupArray(100)(amount) AS amount
FROM
(
   SELECT
      mod(id, 10) AS gid,
      amount
   FROM test.topn
   ORDER BY
      gid ASC,
      amount DESC
) AS a
GROUP BY gid

这个分组TopN测试的对比结果是下面这样的:


微信图片_20221009235439.png


CH做分组TopN计算比常规TopN慢了42倍,说明CH在这种情况下很可能做了排序动作。也就是说,情况复杂化之后,CH的优化引擎又不起作用了。与SQL不同,SPL把TopN看成是一种聚合运算,和sum、count这类运算的计算逻辑是一样的,都只需要对原数据遍历一次。这样,分组求组内TopN就和分组求和、计数一样了,可以避免排序计算。因此,SPL计算分组TopN比CH快了22倍,- SPL下载 。


而且,SPL计算分组TopN的代码也不复杂:



A

1

=file("topn.ctx").open().cursor@mv(id,amount)

2

=A1.groups(id%10:gid;top(10;-amount)).news(#2;gid,~.amount)


不只是跑得快


再来看看电商系统中常见的漏斗运算。SPL的代码依然很简洁:



A

B

1

=["etype1","etype2","etype3"]  =file("event.ctx").open()

2

=B1.cursor(id,etime,etype;etime>=date("2021-01-10") && etime<date("2021-01-25") && A1.contain(etype) && …)

3

=A2.group(id).(~.sort(etime)) =A3.new(~.select@1(etype==A1(1)):first,~:all).select(first)

4

=B3.(A1.(t=if(#==1,t1=first.etime,if(t,all.select@1(etype==A1.~ && etime>t && etime<t1+7).etime, null))))

5

=A4.groups(;count(~(1)):STEP1,count(~(2)):STEP2,count(~(3)):STEP3)


CH的SQL无法实现这样的计算,我们以ORA为例看看三步漏斗的SQL写法:


with e1 as (
    select gid,1 as step1,min(etime) as t1
    from T
    where etime>= to_date('2021-01-10', 'yyyy-MM-dd') and etime

ORA 的SQL写出来要三十多行,理解起来有相当的难度。而且这段代码和漏斗的步骤数量相关,每增加一步数就要再增加一段子查询。相比之下,SPL就简单得多,处理任意步骤数都是这段代码。


这种复杂的SQL,写出来都很费劲,性能优化更无从谈起。


而CH的SQL还远不如ORA,基本上写不出这么复杂的逻辑,只能在外部写C++代码实现。也就是说,这种情况下只能利用CH的存储引擎。虽然用C++在外部计算有可能获得很好的性能,但开发成本非常高。类似的例子还有很多,CH都无法直接实现。


总结一下:CH计算某些简单场景(比如单表遍历)确实很快,和SPL的性能差不多。但是,高性能计算不能只看简单情况快不快,还要权衡各种场景。对于复杂运算而言,SPL不仅性能远超CH,代码编写也简单很多。SPL能覆盖高性能数据计算的全场景,可以说是完胜CH。

目录
相关文章
|
关系型数据库 Linux BI
数据库的一些知识
数据库的一些知识
40 0
ly~
|
1月前
|
存储 SQL NoSQL
数据库介绍
数据库是组织、存储和管理数据的仓库,分为关系型(RDBMS)和非关系型(NoSQL)。RDBMS 如 MySQL、Oracle 和 SQL Server 通过表间关系存储结构化数据;NoSQL 包括 MongoDB、Redis 和 Neo4j,处理非结构化数据。数据库功能组件有数据定义语言(DDL)、数据操作语言(DML)和数据库管理系统(DBMS)。应用场景涵盖企业资源规划(ERP)、电子商务和大数据分析,支持自动化管理、数据分析及决策支持。
ly~
30 3
|
6月前
|
SQL 关系型数据库 MySQL
盘点数据库中的一些坑(一)
盘点数据库中的一些坑(一)
57 0
|
6月前
|
存储 SQL 关系型数据库
我们应该要知道的数据库知识
我们常常谈到数据库可能就会想到Oracle数据库、ACCESS数据库、SQL数据库、MySQL等等,
35 1
|
6月前
|
数据库
数据库(二)
数据查询教程包括单表查询操作,如Select语句用于选取属性,可指定列名、使用别名、计算表达式,并通过Distinct去除重复元组。条件查询(Where子句)支持比较运算,如Between、In、Like(支持模糊匹配)及空值判断。连接查询用于合并多表数据,如内连接、外连接和笛卡尔积。例如,通过连接emp和dept表,可获取员工姓名及其所在部门名称。
45 3
|
6月前
|
存储 关系型数据库 MySQL
数据库(一)
登录MySQL数据库的命令是`mysql -u用户名 -p密码`,其中`-u`后面接用户名,`-p`后面接密码。如果服务器不在本地,还需指定`-h`参数加上IP地址或域名,以及可选的`-P`参数指定端口号。创建数据库使用`create database 数据库名`,查看数据库用`show databases;`。数据类型包括整数类型(如int)、字符串(如char、varchar、text)、日期时间类型(如date、time、datetime)等。数据库操作还包括创建表、修改表结构、删除表以及数据的增删改查操作。数据恢复和备份涉及mysqldump工具及source命令来导入导出数据。
23 1
|
6月前
|
存储 数据库 数据库管理
什么是数据库
什么是数据库。
42 2
|
6月前
|
关系型数据库 MySQL 数据库
数据库(三)
数据完整性是数据库管理中的关键概念,确保数据的准确和一致。主要包括: 1. 实体完整性:通过主键(唯一且非空)来标识表中的每条记录,如创建`test2`表时设置`n1`为主键。 2. 创建表`test3`时,`n1`和`n2`组合成为主键,确保多字段的唯一性。 3. 唯一约束:用于保证列值的唯一性,如在`test1`中添加对`n2`的唯一约束,或创建`test4`时`n1`和`n2`的组合值唯一。 4. 引用完整性:通过外键约束实现,如`emp`表的`dept_id`引用`dept`表的`id`,确保数据间的关联合法性。外键可以有级联操作,如`on delete cascade`和`o
27 0
|
SQL 数据库 Windows
数据库—耿建玲视频总结(二)
首先建库,就好比我们盖房子,我们可以自己盖(企业管理器建库),也可以包给别人让别人给盖(T语言建库)。
|
SQL 数据库
【数据库视频】总结
【数据库视频】总结
95 0
【数据库视频】总结