COVID-19 Cases Prediction (Regression)(二)

简介: COVID-19 Cases Prediction (Regression)

Feature Selection

Choose features you deem useful by modifying the function below.

def select_feat(train_data, valid_data, test_data, select_all=True):
    '''Selects useful features to perform regression'''
    y_train, y_valid = train_data[:,-1], valid_data[:,-1]
    raw_x_train, raw_x_valid, raw_x_test = train_data[:,:-1], valid_data[:,:-1], test_data
    if select_all:
        feat_idx = list(range(raw_x_train.shape[1]))
    else:
        feat_idx = [0,1,2,3,4] # TODO: Select suitable feature columns.
    return raw_x_train[:,feat_idx], raw_x_valid[:,feat_idx], raw_x_test[:,feat_idx], y_train, y_valid

Training Loop

def trainer(train_loader, valid_loader, model, config, device):
    criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.
    # Define your optimization algorithm. 
    # TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
    # TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
    optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9) 
    writer = SummaryWriter() # Writer of tensoboard.
    if not os.path.isdir('./models'):
        os.mkdir('./models') # Create directory of saving models.
    n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0
    for epoch in range(n_epochs):
        model.train() # Set your model to train mode.
        loss_record = []
        # tqdm is a package to visualize your training progress.
        train_pbar = tqdm(train_loader, position=0, leave=True)
        for x, y in train_pbar:
            optimizer.zero_grad()               # Set gradient to zero.
            x, y = x.to(device), y.to(device)   # Move your data to device. 
            pred = model(x)             
            loss = criterion(pred, y)
            loss.backward()                     # Compute gradient(backpropagation).
            optimizer.step()                    # Update parameters.
            step += 1
            loss_record.append(loss.detach().item())
            # Display current epoch number and loss on tqdm progress bar.
            train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')
            train_pbar.set_postfix({'loss': loss.detach().item()})
        mean_train_loss = sum(loss_record)/len(loss_record)
        writer.add_scalar('Loss/train', mean_train_loss, step)
        model.eval() # Set your model to evaluation mode.
        loss_record = []
        for x, y in valid_loader:
            x, y = x.to(device), y.to(device)
            with torch.no_grad():
                pred = model(x)
                loss = criterion(pred, y)
            loss_record.append(loss.item())
        mean_valid_loss = sum(loss_record)/len(loss_record)
        print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
        writer.add_scalar('Loss/valid', mean_valid_loss, step)
        if mean_valid_loss < best_loss:
            best_loss = mean_valid_loss
            torch.save(model.state_dict(), config['save_path']) # Save your best model
            print('Saving model with loss {:.3f}...'.format(best_loss))
            early_stop_count = 0
        else: 
            early_stop_count += 1
        if early_stop_count >= config['early_stop']:
            print('\nModel is not improving, so we halt the training session.')
            return

Configurations

config contains hyper-parameters for training and the path to save your model.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
    'seed': 5201314,      # Your seed number, you can pick your lucky number. :)
    'select_all': True,   # Whether to use all features.
    'valid_ratio': 0.2,   # validation_size = train_size * valid_ratio
    'n_epochs': 3000,     # Number of epochs.            
    'batch_size': 256, 
    'learning_rate': 1e-5,              
    'early_stop': 400,    # If model has not improved for this many consecutive epochs, stop training.     
    'save_path': './models/model.ckpt'  # Your model will be saved here.
}

Dataloader

Read data from files and set up training, validation, and testing sets. You do not need to modify this part.

# Set seed for reproducibility
same_seed(config['seed'])
# train_data size: 2699 x 118 (id + 37 states + 16 features x 5 days) 
# test_data size: 1078 x 117 (without last day's positive rate)
train_data, test_data = pd.read_csv('./covid.train.csv').values, pd.read_csv('./covid.test.csv').values
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])
# Print out the data size.
print(f"""train_data size: {train_data.shape} 
valid_data size: {valid_data.shape} 
test_data size: {test_data.shape}""")
# Select features
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])
# Print out the number of features.
print(f'number of features: {x_train.shape[1]}')
train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
                                            COVID19Dataset(x_valid, y_valid), \
                                            COVID19Dataset(x_test)
# Pytorch data loader loads pytorch dataset into batches.
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

Start training!

it may take lots of time(depends on GPU you drew),be sure stay front your computer or get some scripts or devices to make your screen stay light.

image.png

model = My_Model(input_dim=x_train.shape[1]).to(device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)

and if you never modify any above code,it may train 1883 times

11.png

Plot learning curves with tensorboard (optional)

tensorboard is a tool that allows you to visualize your training progress.If this block does not display your learning curve, please wait for few minutes, and re-run this block.

It might take some time to load your logging information.

%reload_ext tensorboard
%tensorboard --logdir=./runs/

you will get a picture like this.

image.png

Testing

The predictions of your model on testing set will be stored at pred.csv.

def save_pred(preds, file):
    ''' Save predictions to specified file '''
    with open(file, 'w') as fp:
        writer = csv.writer(fp)
        writer.writerow(['id', 'tested_positive'])
        for i, p in enumerate(preds):
            writer.writerow([i, p])
model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
preds = predict(test_loader, model, device) 
save_pred(preds, 'pred.csv')         
100%|██████████| 5/5 [00:00<00:00, 554.88it/s]

after these cells,you will get a pred.csv in the files

image.png

you can download this doc and submit it in kaggle

image.png

and the kaggle will give you a score,if you never modify,you may have a low score like this:13.png

Some optimization

if you work above code,you will pass the Simple Baseline. About how can pass Medium Baseline &Strong Baseline, i will try to give the answer in the future(maybe in 09/2022), teaching assistant gave some hints:

  • 特征选择(Feature selection-what other features are useful?)
  • DNN结构:层数,维度,激活函数(DNN construction-layers, dimension, activation function)
  • 训练(training-mini batch, optimizer, leaning rate)
  • L2 regularization

Reference

all the code was from HUNG-Yi LEE(李宏毅),you can study the 《MACHINE LEARNING 2022SPRING》 in https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php


above all was my study note, if you have any suggestions, welcome to comment.

目录
相关文章
|
机器学习/深度学习 数据采集
2D Logistic Regression
2D Logistic Regression 是一种用于解决二分类问题的机器学习模型,它是 Logistic Regression 在多维空间中的扩展。在 2D Logistic Regression 中,我们使用一个二维平面(或多维空间中的超平面)来将不同类别的数据分开。
88 1
|
机器学习/深度学习 算法 决策智能
Lecture 4:无模型预测
Lecture 4:无模型预测
138 1
|
机器学习/深度学习 数据采集
Logistic Regression
机器学习中的逻辑回归(Logistic Regression)是一种用于解决分类问题的线性模型。它通过拟合一条直线(或平面),将输入变量与输出变量(通常为二值变量,如 0 或 1)之间的关系表示出来。
65 0
|
机器学习/深度学习 算法 Python
MachineLearning---Naive Bayes
MachineLearning---Naive Bayes
82 0
|
数据可视化 数据挖掘
【论文解读】Dual Contrastive Learning:Text Classification via Label-Aware Data Augmentation
北航出了一篇比较有意思的文章,使用标签感知的数据增强方式,将对比学习放置在有监督的环境中 ,下游任务为多类文本分类,在低资源环境中进行实验取得了不错的效果
455 0
|
运维 安全 数据挖掘
Outlier and Outlier Analysis|学习笔记
快速学习 Outlier and Outlier Analysis
Outlier and Outlier Analysis|学习笔记
|
机器学习/深度学习
COVID-19 Cases Prediction (Regression)(一)
COVID-19 Cases Prediction (Regression)
535 0
COVID-19 Cases Prediction (Regression)(一)
|
编解码 PyTorch 算法框架/工具
YOLOv5的Tricks | 【Trick3】Test Time Augmentation(TTA)
一句话简单的介绍Test Time Augmentation(TTA)就是测试过程中也使用数据增强,官方教程介绍:Test-Time Augmentation (TTA) Tutorial
669 0
|
机器学习/深度学习 自然语言处理 算法
深度学习Loss合集:一文详解Contrastive Loss/Ranking Loss/Triplet Loss等区别与联系
深度学习Loss合集:一文详解Contrastive Loss/Ranking Loss/Triplet Loss等区别与联系
1580 0
深度学习Loss合集:一文详解Contrastive Loss/Ranking Loss/Triplet Loss等区别与联系

热门文章

最新文章