HDOJ 2131 Probability

简介: HDOJ 2131 Probability

Problem Description

Mickey is interested in probability recently. One day , he played a game which is about probability with mini.First mickey gives a letter and a word to mini.Then mini calculate the probability that the letter appears in the word.For example,give you the letter “a” and the word “apple”. the probability of this case is 0.20000.


Input

The input contains several test cases. Each test case consists of a letter and a word.The length of the word is no longer than 200.


Output

For each test case, print the probability rounded to five digits after the decimal point.


Sample Input

a apple

c Candy

a banana


Sample Output

0.20000

0.20000

0.50000


题意:

先输入一个字符,再输入一个字符串,然后输出该字符在字符串中占多少比例;保留5位小数。

属于简单题。

import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            String a = sc.next();
            String strs = sc.next();
            int anum = 0;
            String strss = "";
            for(int i=0;i<strs.length();i++){
                strss = strs.charAt(i)+"";
                if(a.equalsIgnoreCase(strss)){
                    anum++;
                }
            }
            double num = (double)((double)anum/(double)strs.length());
            System.out.printf("%.5f\t\n",num);
        }
    }
}
目录
相关文章
HDOJ 2101 A + B Problem Too
HDOJ 2101 A + B Problem Too
103 0
HDOJ 1002 A + B Problem II
HDOJ 1002 A + B Problem II
117 0
|
Java
HDOJ 1000 A + B Problem
HDOJ 1000 A + B Problem
113 0
HDOJ 1098 Ignatius's puzzle
HDOJ 1098 Ignatius's puzzle
117 0
HDOJ 2058 The sum problem
HDOJ 2058 The sum problem
111 0
HDOJ 1001Sum Problem
HDOJ 1001Sum Problem
108 0
HDOJ(HDU) 1673 Optimal Parking
HDOJ(HDU) 1673 Optimal Parking
122 0
|
人工智能
HDOJ 1028 Ignatius and the Princess III(递推)
HDOJ 1028 Ignatius and the Princess III(递推)
118 0
HDOJ 1405 The Last Practice
HDOJ 1405 The Last Practice
100 0
|
数据挖掘
HDOJ 1032(POJ 1207) The 3n + 1 problem
HDOJ 1032(POJ 1207) The 3n + 1 problem
129 0