《人脸识别原理及算法——动态人脸识别系统研究》—第5章5.4节利用局部特征识别人脸图像

简介:

本节书摘来自异步社区《人脸识别原理及算法——动态人脸识别系统研究》一书中的第5章5.4节利用局部特征识别人脸图像,作者 沈理 , 刘翼光 , 熊志勇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

5.4 利用局部特征识别人脸图像
人脸识别原理及算法——动态人脸识别系统研究
如同可对整幅人脸图像进行PCA分析,得到全幅图像的主成分,并用于人脸图像的识别一样,也可利用局部特征的主成分进行人脸图像的识别。P. Penev[52]认为,PCA方法是一种全局分析技术,不能提取样本集合的拓扑结构信息以及每个像素点处的局部信息,因此如果利用局部特征进行识别,就可以人为地利用样本集合的拓扑结构,得到样本的局部结构信息。

而且,局部特征具有抗干扰能力强的特点,例如图像全局特征可能会出现较大变化,但在某一局部区域可能变化很小。这时利用全幅图像的特征向量空间进行识别有可能识别不出,而利用局部特征的特征向量空间进行识别往往能够识别。图5-20所示为利用局部特征识别人脸图像,其中图5-20(a)为库中图像(取自UMIST人脸图像库,共有20幅),图5-20(b)为待识别人脸图像,两者整体上相差较大,但右眼区域变化相对较小。
screenshot
识别时,首先利用全局特征向量进行识别,实验结果表明,不能正确识别;然后利用局部特征眼睛向量空间进行识别,实验结果表明,能够正确识别。

为了进一步考察局部特征的识别能力,进行了如下两组实验。

实验5.28:使用局部特征对深度旋转人脸图像的识别。
① 所用训练样本图像以及待识图像均取自UMIST的人脸图像库,训练样本为20幅正面人脸图像,如图5-20(a)所示;待识人脸图像为20幅深度旋转人脸图像,旋转角度为45°,如图5-20(b)所示。

② 识别过程为:分别利用全局特征向量空间、局部右眼特征向量空间、局部鼻子特征空间、嘴部特征空间进行识别。识别结果见表5-6第二列。

实验5.29:使用局部特征对正面人脸图像的识别。
① 所用训练样本图像以及待识图像均取自FERET的人脸图像库,共取自99个不同的人脸,每个人提供两幅正面图像,只是表情稍微有些变化,分别标记为fa、fb,如图5-16和图5.18所示;训练样本为99幅fa图像,待识人脸图像为99幅fb图像。

② 识别过程为:分别利用全局特征向量空间,局部左、右眼特征向量空间,局部鼻子特征空间,嘴部特征空间进行识别。识别结果见表5-6第三列。
screenshot
注: 实验5.28中由于待识图像的左眼区域不可见,因此不用于识别
由表5-6可见,仅使用局部特征也能够进行识别,且对于图像深度旋转、部分缺失等情况,相对于全局特征向量识别,其优越性更加明显;同时利用局部特征进行识别,还不受图像背景以及图像偏移的影响。本书第6章将利用局部特征的这一特性,得到人脸图像的双属性图表示。

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

目录
打赏
0
0
0
0
1811
分享
相关文章
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
73 3
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
83 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
70 3
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
82 4
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
102 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等