《人脸识别原理及算法——动态人脸识别系统研究》—第5章5.4节利用局部特征识别人脸图像

简介:

本节书摘来自异步社区《人脸识别原理及算法——动态人脸识别系统研究》一书中的第5章5.4节利用局部特征识别人脸图像,作者 沈理 , 刘翼光 , 熊志勇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

5.4 利用局部特征识别人脸图像
人脸识别原理及算法——动态人脸识别系统研究
如同可对整幅人脸图像进行PCA分析,得到全幅图像的主成分,并用于人脸图像的识别一样,也可利用局部特征的主成分进行人脸图像的识别。P. Penev[52]认为,PCA方法是一种全局分析技术,不能提取样本集合的拓扑结构信息以及每个像素点处的局部信息,因此如果利用局部特征进行识别,就可以人为地利用样本集合的拓扑结构,得到样本的局部结构信息。

而且,局部特征具有抗干扰能力强的特点,例如图像全局特征可能会出现较大变化,但在某一局部区域可能变化很小。这时利用全幅图像的特征向量空间进行识别有可能识别不出,而利用局部特征的特征向量空间进行识别往往能够识别。图5-20所示为利用局部特征识别人脸图像,其中图5-20(a)为库中图像(取自UMIST人脸图像库,共有20幅),图5-20(b)为待识别人脸图像,两者整体上相差较大,但右眼区域变化相对较小。
screenshot
识别时,首先利用全局特征向量进行识别,实验结果表明,不能正确识别;然后利用局部特征眼睛向量空间进行识别,实验结果表明,能够正确识别。

为了进一步考察局部特征的识别能力,进行了如下两组实验。

实验5.28:使用局部特征对深度旋转人脸图像的识别。
① 所用训练样本图像以及待识图像均取自UMIST的人脸图像库,训练样本为20幅正面人脸图像,如图5-20(a)所示;待识人脸图像为20幅深度旋转人脸图像,旋转角度为45°,如图5-20(b)所示。

② 识别过程为:分别利用全局特征向量空间、局部右眼特征向量空间、局部鼻子特征空间、嘴部特征空间进行识别。识别结果见表5-6第二列。

实验5.29:使用局部特征对正面人脸图像的识别。
① 所用训练样本图像以及待识图像均取自FERET的人脸图像库,共取自99个不同的人脸,每个人提供两幅正面图像,只是表情稍微有些变化,分别标记为fa、fb,如图5-16和图5.18所示;训练样本为99幅fa图像,待识人脸图像为99幅fb图像。

② 识别过程为:分别利用全局特征向量空间,局部左、右眼特征向量空间,局部鼻子特征空间,嘴部特征空间进行识别。识别结果见表5-6第三列。
screenshot
注: 实验5.28中由于待识图像的左眼区域不可见,因此不用于识别
由表5-6可见,仅使用局部特征也能够进行识别,且对于图像深度旋转、部分缺失等情况,相对于全局特征向量识别,其优越性更加明显;同时利用局部特征进行识别,还不受图像背景以及图像偏移的影响。本书第6章将利用局部特征的这一特性,得到人脸图像的双属性图表示。

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
20天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
2月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
15天前
|
算法 安全 Go
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
本文探讨了如何利用 Go 语言中的 Bloom Filter 算法提升公司局域网管理系统的性能。Bloom Filter 是一种高效的空间节省型数据结构,适用于快速判断元素是否存在于集合中。文中通过具体代码示例展示了如何在 Go 中实现 Bloom Filter,并应用于局域网的 IP 访问控制,显著提高系统响应速度和安全性。随着网络规模扩大和技术进步,持续优化算法和结合其他安全技术将是企业维持网络竞争力的关键。
27 2
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
|
7天前
|
数据采集 人工智能 编解码
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
29 9
|
1天前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
20天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
18天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
40 15
|
9天前
|
算法 数据安全/隐私保护
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
14天前
|
传感器 算法 数据安全/隐私保护
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。

热门文章

最新文章