《UNIX网络编程 卷1:套接字联网API(第3版)》——2.4 传输控制协议(TCP)

简介: 其次,TCP还提供了可靠性(reliability)。当TCP向另一端发送数据时,它要求对端返回一个确认。如果没有收到确认,TCP就自动重传数据并等待更长时间。在数次重传失败后,TCP才放弃,如此在尝试发送数据上所花的总时间一般为4~10分钟(依赖于具体实现)。

本节书摘来自异步社区《UNIX网络编程 卷1:套接字联网API(第3版)》一书中的第2章,第2.4节,作者:【美】W. Richard Stevens , Bill Fenner , Andrew M. Rudoff著,更多章节内容可以访问云栖社区“异步社区”公众号查看

2.4 传输控制协议(TCP)

由TCP向应用进程提供的服务不同于由UDP提供的服务。TCP在RFC 793[Poste1 ]中有详细说明,然后由RFC 1323[Jacobson, Braden, and Borman 1992]、RFC 2581[Allman, Paxson, and Stevens 1999]、RFC 2988[Paxson and Allman 2000]和RFC 3390[Allman, Floyd, and Partridge 2002]加以更新。首先,TCP提供客户与服务器之间的连接(connection)。TCP客户先与某个给定服务器建立一个连接,再跨该连接与那个服务器交换数据,然后终止这个连接。

其次,TCP还提供了可靠性(reliability)。当TCP向另一端发送数据时,它要求对端返回一个确认。如果没有收到确认,TCP就自动重传数据并等待更长时间。在数次重传失败后,TCP才放弃,如此在尝试发送数据上所花的总时间一般为4~10分钟(依赖于具体实现)。

注意,TCP并不保证数据一定会被对方端点接收,因为这是不可能做到的。如果有可能,TCP就把数据递送到对方端点,否则就(通过放弃重传并中断连接这一手段)通知用户。这么说来,TCP也不能被描述成是100%可靠的协议,它提供的是数据的可靠递送或故障的可靠通知。

TCP含有用于动态估算客户和服务器之间的往返时间(round-trip time,RTT)的算法,以便它知道等待一个确认需要多少时间。举例来说,RTT在一个局域网上大约是几毫秒,跨越一个广域网则可能是数秒钟。另外,因为RTT受网络流通各种变化因素影响,TCP还持续估算一个给定连接的RTT。

TCP通过给其中每个字节关联一个序列号对所发送的数据进行排序(sequencing)。举例来说,假设一个应用写2048字节到一个TCP套接字,导致TCP发送2个分节:第一个分节所含数据的序列号为1~1024,第二个分节所含数据的序列号为1025~2048。(分节是TCP传递给IP的数据单元。)如果这些分节非顺序到达,接收端TCP将先根据它们的序列号重新排序,再把结果数据传递给接收应用。如果接收端TCP接收到来自对端的重复数据(譬如说对端认为一个分节已丢失并因此重传,而这个分节并没有真正丢失,只是网络通信过于拥挤),它可以(根据序列号)判定数据是重复的,从而丢弃重复数据。

UDP不提供可靠性。UDP本身不提供确认、序列号、RTT估算、超时和重传等机制。如果一个UDP数据报在网络中被复制,两份副本就可能都递送到接收端的主机。同样地,如果一个UDP客户发送两个数据报到同一个目的地,它们可能被网络重新排序,颠倒顺序后到达目的地。UDP应用必须处理所有这些情况,在22.5节中我们将展示如何处理。

再次,TCP提供流量控制(flow control)。TCP总是告知对端在任何时刻它一次能够从对端接收多少字节的数据,这称为通告窗口(advertised window)。在任何时刻,该窗口指出接收缓冲区中当前可用的空间量,从而确保发送端发送的数据不会使接收缓冲区溢出。该窗口时刻动态变化:当接收到来自发送端的数据时,窗口大小就减小,但是当接收端应用从缓冲区中读取数据时,窗口大小就增大。通告窗口大小减小到0是有可能的:当TCP对应某个套接字的接收缓冲区已满,导致它必须等待应用从该缓冲区读取数据时,方能从对端再接收数据。

UDP不提供流量控制。如我们将在8.13节所示,让较快的UDP发送端以一个UDP接收端难以跟上的速率发送数据报是非常容易的。

最后,TCP连接是全双工的(full-duplex)。这意味着在一个给定的连接上应用可以在任何时刻在进出两个方向上既发送数据又接收数据。因此,TCP必须为每个数据流方向跟踪诸如序列号和通告窗口大小等状态信息。建立一个全双工连接后,需要的话可以把它转换成一个单工连接(见6.6节)。

UDP可以是全双工的。

相关文章
|
11天前
|
域名解析 存储 网络协议
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
本文详细介绍了IP协议报头结构及其各字段的功能,包括版本、首部长度、服务类型、总长度、标识、片偏移、标志、生存时间(TTL)、协议、首部检验和等内容。此外,还探讨了IP地址的网段划分、特殊IP地址的应用场景,以及路由选择的大致流程。最后,文章简要介绍了DNS协议的作用及其发展历史,解释了域名解析系统的工作原理。
48 5
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
14天前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
133 73
|
1天前
|
域名解析 存储 网络协议
TCP套接字【网络】
TCP套接字【网络】
18 10
|
11天前
|
监控 网络协议 网络性能优化
如何办理支持UDP协议的网络
在当今网络环境中,UDP(用户数据报协议)因传输速度快、延迟低而广泛应用于在线游戏、视频流媒体、VoIP等实时服务。本文详细介绍了办理支持UDP协议网络的方法,包括了解UDP应用场景、选择合适的ISP及网络套餐、购买支持UDP的设备并进行优化设置,以及解决常见问题的策略,帮助用户确保网络稳定性和速度满足实际需求。
|
11天前
|
网络协议 网络安全 网络架构
分布式基础-网络通信协议讲解
分布式基础-网络通信协议讲解
分布式基础-网络通信协议讲解
|
14天前
|
数据采集 JSON API
🎓Python网络请求新手指南:requests库带你轻松玩转HTTP协议
本文介绍Python网络编程中不可或缺的HTTP协议基础,并以requests库为例,详细讲解如何执行GET与POST请求、处理响应及自定义请求头等操作。通过简洁易懂的代码示例,帮助初学者快速掌握网络爬虫与API开发所需的关键技能。无论是安装配置还是会话管理,requests库均提供了强大而直观的接口,助力读者轻松应对各类网络编程任务。
56 3
|
15天前
|
机器学习/深度学习 JSON API
HTTP协议实战演练场:Python requests库助你成为网络数据抓取大师
在数据驱动的时代,网络数据抓取对于数据分析、机器学习等至关重要。HTTP协议作为互联网通信的基石,其重要性不言而喻。Python的`requests`库凭借简洁的API和强大的功能,成为网络数据抓取的利器。本文将通过实战演练展示如何使用`requests`库进行数据抓取,包括发送GET/POST请求、处理JSON响应及添加自定义请求头等。首先,请确保已安装`requests`库,可通过`pip install requests`进行安装。接下来,我们将逐一介绍如何利用`requests`库探索网络世界,助你成为数据抓取大师。在实践过程中,务必遵守相关法律法规和网站使用条款,做到技术与道德并重。
30 2
|
17天前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
48 3
|
11天前
|
安全 算法 网络安全
无线网络中的WEP协议及其安全性问题
无线网络中的WEP协议及其安全性问题
29 0
下一篇
无影云桌面