【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括卷积、主干网络、注意力机制和检测头的创新。提出了一种新的边界框回归损失函数MPDIoU,它基于最小点距离,能更好地处理不同宽高比的预测框,包含重叠、中心点距离和尺寸偏差的全面考虑。MPDIoU损失函数在YOLACT和YOLOv7等模型上的实验显示了优于现有损失函数的性能。此外,还介绍了WIoU_Scale类用于计算加权IoU,以及bbox_iou函数实现不同IoU变体的计算。详细实现和配置可在相应链接中查阅。
Linux怎样更新Centos下Gcc版本支持C++17?
Centos7快速安装gcc8.3.1 可支持C++17(附gcc相关链接整理)
centos7直接yum安装的那个gcc版本为4.8.5,对于大多数的需求来说都是低了。系统安装镜像里的那个版本也是4.8.5。 在g++ 7 以上的版本中添加了对c++17 的支持,所以为了工作需要现在需要升级到高版本。
Go vs Java:在大数据处理领域的性能对比
Go与Java在大数据处理中各有特点。Go启动快,内存占用少,静态类型及并发模型(goroutine和channel)使其在并发性能上有优势。Java虽然启动慢,JVM内存占用高,但拥有丰富的生态系统和并发工具。代码示例展示了Go的goroutine和Java的线程池处理大数据的场景。在性能上,Go可能更优,但Java的跨平台性和生态广度使其仍被广泛应用。
阿里DataX极简教程
【5月更文挑战第1天】DataX是一个高效的数据同步工具,用于在各种数据源之间迁移数据,如MySQL到另一个MySQL或MongoDB。它的工作流程包括read、write和setting步骤,通过Framework协调多线程处理。其核心架构包括Job、Task和TaskGroup,支持并发执行。DataX支持多种数据源,如RDBMS、阿里云数仓、NoSQL和无结构化数据存储。例如,从MySQL读取数据并同步到ClickHouse的实践操作包括下载DataX、配置任务文件和执行同步任务。
golang 系列:channel 全面解析
channel 是 goroutine 与 goroutine 之间通信的重要桥梁,借助 channel,我们能很轻易的写出一个**多协程**通信程序。今天,我们就来看看这个 channel 的常用用法以及底层原理。