GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。
10分钟微调,让0.6B模型媲美235B模型!免费体验进行中
本方案介绍如何通过模型蒸馏技术,利用大参数模型生成数据并微调小参数模型(如 Qwen3-0.6B),使其在特定任务(如从一句话中提取结构化信息)中达到接近大模型的效果。通过 GPU 云服务器进行高效微调,结合魔搭社区的 ms-swift 框架,用户可快速完成模型训练与部署,显著提升推理速度并降低成本。方案包含详细步骤:数据准备、模型微调、效果验证及部署建议,并提供免费试用资源,助力开发者快速上手实践。