决策智能

首页 标签 决策智能
# 决策智能 #
关注
2080内容
Multi-Agent实践第9期: 多智能体的升级体验
AgentScope 的新版本主要从 RAG,可视化和系统提示优化三个角度进行了更新,旨在降低开发者的开发代价,提供更加友好的开发体验。
数字图像处理课程设计---基于CNN(卷积神经网络)的医学影像识别
医学影像的识别(recognition)、分割(segmentation)和解析(parsing)是医学影像分析的核心任务。医学影像识别是指识别医学图像中的目标。理论上,目标的识别并不需要对目标进行检测或定位;但是实际上,通常会结合检测和定位去辅助完成目标识别。一旦完成识别,或检测,即得到了目标的最小外包矩形框(bounding box),就可以通过分割的任务寻找目标物体的精确边界。当图像中存在多个目标物体时,对多个目标的分割就变成了语义解析的任务,即对2D图像或3D图像中的像素赋予语义标签(Semantic Labels)。通过将同一目标的像素或体素打上相同的标签,就完成了对该目标的分割。
| |
来自: 云原生
AHPA 弹性预测最佳实践
在云原生场景下,资源容量往往难以预估,而使用 K8s 原生的 HPA,往往要面对弹性滞后以及配置复杂问题。阿里云容器服务与达摩院决策智能时序团队合作推出的 AHPA(Advanced Horizontal Pod Autoscaler)弹性预测,可以根据业务历史指标,自动识别弹性周期并对容量进行预测,帮你提前进行弹性规划,解决弹性滞后的问题。 AHPA 如何配置才能解锁最佳使用姿势?本文给你带来 AHPA 弹性预测最佳实践
通用的改进遗传算法求解带约束的优化问题(MATLAB代码)
通用的改进遗传算法求解带约束的优化问题(MATLAB代码)
高分SCI必备:使用R语言和机器学习算法解析心脏病中的变量重要性
心脏病是全球范围内主要的致死因素之一[1],给人们的生活和健康带来了巨大的挑战。为了预测和诊断心脏病,研究人员使用了各种机器学习算法,并通过分析变量重要性来理解特征对心脏病的影响。
|
7月前
|
阿里巴巴达摩院“绿色能源AI”解决方案
阿里巴巴达摩院决策智能实验室致力于研究决策智能系统需要的国际前沿技术,提升业务运营效率和收益、降低成本。在电力能源行业构建出“绿色能源AI”方案,与国家电网、南方电网等企业合作落地多个项目。代表作软件是行业领先的MindOpt优化求解器、智能电力预测eForecaster、MindOpt Studio决策开发云平台。研究方向包含机器学习、数学建模、优化求解、 时序预测、因果分析、决策方案可解释性、决策推理大模型等。本篇是达摩院“绿色能源AI"方案的介绍幻灯片图,供大家了解方案的能力。
|
4月前
|
"携手并进,共创未来:多角色Agent协同作战,如何以智能融合的力量高效征服复杂任务新挑战!"
【8月更文挑战第21天】多Agent系统集结多个智能体,通过角色分配、通信与冲突解决等机制高效协作,完成复杂任务。智能体根据各自能力和任务需求扮演不同角色,通过有效沟通及任务分解,实现资源优化配置与目标协同达成,展现出高灵活性与适应性。
免费试用