17种RAG实现方法大揭秘
RAG(检索增强生成)通过结合外部知识库与LLM生成能力,有效解决大模型知识滞后与幻觉问题。本文详解三类策略、17种实现方案,涵盖文档分块、检索排序与反馈机制,并提供工程选型指南,助力构建高效智能系统。
智能语音助手的技术原理与实现
【7月更文挑战第31天】智能语音助手的技术原理与实现涉及语音识别、自然语言处理、知识图谱以及多模态交互等多个方面。随着人工智能技术的不断发展和创新,智能语音助手将更加智能化、高效化和普适化,为我们的生活带来更加便捷和丰富的体验。
大语言模型及其应用场景
大语言模型(如通义千问)凭借强大的自然语言处理能力,在内容创作、对话系统、翻译、信息抽取、代码生成、智能搜索、教育、企业管理和法律等领域展现巨大潜力,助力提升各行业智能化水平。
[万字长文]知识图谱之本体结构与语义解耦——知识建模看它就够了!
过去两年多的时间,针对蚂蚁域内业务场景和知识体系多样、复杂,知识建模成本高导致图谱项目启动难的问题,我们提出了一种结构与语义解耦的知识建模及schema设计方法,并在商家图谱、事理图谱、保险图谱等多个项目中进行实践。相关简化schema设计及帮助对知识的属性语义化、标准化的能力已经集成到蜘蛛知识平台。本文总结了我们过去所工作,沉淀为体系化的方法论,并针对不同复杂程度的知识建模问题,进行实操指南。