让RAG更聪明,ViDoRAG开启视觉文档检索增强生成新范式,上阿里云百炼可直接体验
视觉丰富文档的高效检索与生成是自然语言处理领域的重大挑战。ViDoRAG(Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents)由阿里巴巴通义实验室、中国科学技术大学和上海交通大学联合提出,通过多智能体框架和动态迭代推理机制解决此问题。其核心包括多模态混合检索策略和多智能体生成流程,同时发布的ViDoSeek数据集,专为大规模文档集合设计,提供复杂推理与精准问答的评估基准。实验表明,ViDoRAG在准确率和效率上优于传统方法,未来将优化系统性能并降低计算成本。
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
AI大模型运维开发探索第四篇:智能体分阶段演进路线
本文探讨了智能体工程的演进历程,从最初的思维链(智能体1.0)到实例化智能体(智能体2.0),再到结构化智能体(智能体3.0),最终展望了自演进智能体(智能体4.0)。文章详细分析了各阶段遇到的问题及解决策略,如工具调用可靠性、推理能力提升等,并引入了大模型中间件的概念以优化业务平台与工具间的协调。此外,文中还提到了RunnableHub开源项目,为读者提供了实际落地的参考方案。通过不断迭代,智能体逐渐具备更强的适应性和解决问题的能力,展现了未来AI发展的潜力。
今日论文推荐:MAPS、RoboFactory、OpenVLThinker等
由 AIRI 和 MIPT 等机构提出的这项工作,聚焦于视觉编码器生成的大量视觉 token 如何在保持高质量表征的同时减少计算成本。他们提出了一种自适应 token 削减方法,通过结合自编码器和 Gumbel-Softmax 选择机制,筛选出最具信息量的 token。实验表明,在 OCR 任务中可削减超 50% 的视觉上下文而不损失性能,为高效多模态推理开辟了新方向。