CosyVoice再升级,可扩展流式语音合成
通义实验室在前期的工作中提出了基于监督离散语音标记的多语言语音合成模型CosyVoice。通过使用两种流行的生成模型:语言模型 (LM) 和流匹配进行渐进式语义解码,CosyVoice 在语音语境学习中实现了较高的韵律自然度、内容一致性和说话人相似性。
神经codec模型相关论文
本文汇总了近年来在神经音频编解码器和语音语言模型领域的多项重要研究,涵盖从2020年到2024年的最新进展。这些研究包括端到端的音频编解码器、高效音频生成、高保真音频压缩、多模态表示学习等。每项研究都提供了详细的论文链接、代码和演示页面,方便读者深入了解和实验。例如,SoundStream(2021)提出了一种端到端的神经音频编解码器,而AudioLM(2022)则通过语言建模方法生成音频。此外,还有多个项目如InstructTTS、AudioDec、HiFi-Codec等,分别在表达性TTS、开源高保真音频编解码器和高保真音频压缩方面取得了显著成果。
《C 语言复数运算:赋能人工智能信号处理新境界》
在人工智能领域,信号处理技术如同一把万能钥匙,开启复杂数据背后的奥秘。复数运算以其独特的数学魅力,在语音识别、图像分析、通信系统等领域发挥重要作用。本文探讨了复数运算在C语言环境下的应用,包括通信调制解调、图像处理和音频信号分析等方面,强调了其在提高算法效率和精度方面的关键作用。