一条SQL管理向量全生命周期,让AI应用开发更简单
本文探讨了AI应用开发中向量数据管理的挑战,介绍了PolarDB IMCI通过在数据库内核中集成向量索引与Embedding能力,实现向量全生命周期管理的创新方案。该方案有效解决了技术栈分裂、数据孤岛和运维复杂等痛点,提供了一体化、高性能、支持事务与实时检索的向量数据库服务,极大降低了AI应用的开发与维护门槛。
explain的type几种类型详解
在 MySQL 中,使用 EXPLAIN(或 EXPLAIN SELECT ...)可以查看 SQL 语句的执行计划,而其中最重要的字段之一就是 type。它表示 MySQL 在执行查询时访问数据表的方式(即访问类型),也叫做 连接类型(Join Type)。
Cursor 完全使用教程
Cursor 是由 Anysphere 实验室开发的一款 AI 驱动代码编辑器,基于 VSCode 深度定制,支持导入 VSCode 配置。相比 GitHub Copilot 插件,Cursor 在代码补全、对话生成、多文件修改等方面体验更优,支持快捷键快速调用 AI 功能,提供丰富上下文注记,提升开发效率。需订阅使用,适合追求高效编程体验的开发者。
从基础到高阶,全面提升AI生成质量
本文介绍了RAG(Retrieval-Augmented Generation)系统的三大核心模块:文档分块、检索排序与反馈自适应。涵盖17种关键技术,如基础分块、语义分块、上下文增强、重排序、反馈闭环与知识图谱融合等,旨在提升信息检索质量与生成答案的准确性。通过模块化设计,系统可灵活适配不同业务场景,实现持续优化与智能进化,为构建高效、精准的AI应用提供技术支撑。
17种RAG实现方法大揭秘
RAG(检索增强生成)通过结合外部知识库与LLM生成能力,有效解决大模型知识滞后与幻觉问题。本文详解三类策略、17种实现方案,涵盖文档分块、检索排序与反馈机制,并提供工程选型指南,助力构建高效智能系统。
Merge 流程源码分析
本文介绍了Elasticsearch写入流程中的关键阶段,包括路由写请求、数据写入主分片与副本、refresh、flush及segment合并等操作,详细说明了各阶段的工作机制及优化配置项,帮助理解数据从写入到可搜索的全过程。