C++

首页 标签 C++
# C++ #
关注
62050内容
|
29天前
|
CVPR 2024 | 赋能大语言模型以精准理解视频时序瞬间 | LLM | 时序预测
VTimeLLM提出新型时间感知架构,赋能大语言模型精准理解视频时序瞬间。通过时间对齐表征与时序预训练,实现事件定位、时序推理与细粒度视频理解,支持自然语言交互式探索视频内容。
|
29天前
|
Flutter PC 应用开发指南:从环境搭建到实战避坑
本文系统介绍如何在 Windows 平台使用 Flutter 开发 PC 应用,涵盖环境搭建、项目创建、插件兼容性、原生功能调用、签名发布、常见问题解决及性能优化等全流程,助你高效构建跨平台桌面应用,少走弯路。
|
1月前
|
VideoLLaMA 3新一代前沿多模态基础模型赋能图像与视频深度理解| LLM | 计算机视觉
VideoLLaMA 3是2025年发布的前沿多模态模型,深度融合视觉、音频与语言,支持长视频、高分辨率图像理解及视听融合推理。基于Llama 3架构,具备强大时空因果分析能力,适用于复杂视频理解任务,已在Lab4AI平台开放复现。
AAAI2025!北理工团队提出FBRT-YOLO:面向实时航拍图像更快更好的目标检测 |计算机视觉|目标检测
FBRT-YOLO提出专用于航拍图像的实时目标检测模型,通过轻量化设计、增强多尺度融合与小目标优化,在保证高精度的同时显著提升速度,实现复杂场景下更优的性能平衡。
|
1月前
|
CVPR 2024 目标检测!开放词汇
YOLO-World是CVPR 2024提出的一种实时开放词汇目标检测模型,首次将YOLO的高速特性与开放词汇识别能力结合。它无需微调即可通过文本提示检测任意物体,支持零样本推理,兼具高精度与灵活性,适用于机器人、自动驾驶等实时感知场景,标志着目标检测迈向通用化新阶段。
|
1月前
|
毅硕HPC | 配置SLURM作业队列优先级
本文介绍在Slurm系统环境下,当出现作业提交或作业状态变化时,如何通过恰当的队列配置策略来实现尽可能多的任务调度处理,以达到最佳性能。
|
1月前
| |
构建AI智能体:二十六、语言模型的“解码策略”:一文读懂AI文本生成的采样方法
本文探讨了AI文本生成中的采样方法,这些方法决定了AI如何选择候选词来生成文本。文章介绍了两种主要方法:确定性方法(贪心算法和束搜索)和随机采样方法(基础随机采样、温度采样、Top-k采样和Top-p采样)。贪心算法每次选择概率最高的词,生成结果可靠但缺乏创意;束搜索保留多条候选路径,适合需要准确性的任务。随机采样方法则通过引入随机性增加多样性,其中温度采样通过调整温度参数控制创意的随机程度,Top-p采样则动态选择候选词集合,是目前创造性任务的首选方法。
|
1月前
| |
来自: 弹性计算
配置管理这点事:从“人肉运维”到“一键交付”,Ansible/Puppet 到底牛在哪?
配置管理这点事:从“人肉运维”到“一键交付”,Ansible/Puppet 到底牛在哪?
|
1月前
| |
来自: 云原生
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
|
1月前
| |
PPT大纲生成的AI魔法:3小时工作3分钟搞定,但重点不是效率
本文从反常识角度切入,通过三个场景案例,阐述AI大纲生成工具的真正价值不在于效率提升,而在于帮助使用者建立结构化思维模式。文章提供完整的AI指令和系统的使用进阶指南。
免费试用