纯云大数据系统的构建与价值
在2017在线峰会——票选最美云上大数据暨大数据技术峰会上,来自上海云贝网络科技有限公司的 首席架构师-刘立兼 分享了基于阿里云产品,如何构建一个大数据系统,以及系统如何在实际的业务过程中帮助客户提升价值。他主要从客户价值、产品线、服务、数据中心、基础设施、数据采集服务六个方面进行了实践分享。
【阿里内部应用】利用blink+MQ实现流计算中的超时统计问题
案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总 一. 背景介绍 菜鸟的物流数据本身就有链路复杂、实操节点多、汇总维度多、考核逻辑复杂的特点,对于实时数据的计算存在很大挑战。经过仓配ETL团队的努力,目前仓配实时数据已覆盖了绝大多数场景,但是有这样一类特殊指标:“晚点超时指标”(例如:出库超6小时未揽收的订单量),仍存在实时汇总计算困难。
阿里云MaxCompute 2018-10月刊
阿里云 MaxCompute 2018-10月 新功能发布汇总,更有技术干货、最佳实践等精彩博文推荐,欢迎阅读。
变而不变:我看分布式系统发展和阿里实践
本文PPT来自阿里云大数据计算平台资深架构师林伟10月15日在2016年杭州云栖大会上发表的《我看分布式系统发展和阿里实践》。
【广州云栖大数据/人工智能会场信息】全新一代人工智能引擎MaxCompute惊艳全场
11月22日在广州举办的2017年云栖大会·广东分会今天拉开序幕,小编已经深深感受到了华南地区小伙伴们的热情,针对大家好奇的问题,如本届广东分会阿里云会有什么亮点?邀请了哪些嘉宾?展台会有什么活动等等问题,小编在这里为大家做个现场报道吧!
MaxCompute SQL Row_Sequence 实现列自增长
通过MaxCompute UDF来给海量数据的每一行产生唯一的id
列式存储系列(二): Vertica
本文就 Vertica 的数据模型、存储、执行引擎以及这几个方面与 C-Store 的区别进行了简单的介绍。总的来说,Vertica 是一个纯正的列式存储数据库,为此,Vertica 设计实现了 projection 这一数据模型,并围绕该模型设计实现了一套大数据分析管理引擎。
阿里关涛谈大规模计算—从数字化阿里到数字化城市的进化
MaxCompute是ET大脑供血系统极其重要的组成部分,如果没有MaxCompute,今天我们将没办法给大家讲述任何一个成功的故事。
从 Storm 到 Flink,汽车之家基于 Flink 的实时 SQL 平台设计思路与实践
汽车之家的实时 SQL 平台设计思路与实践,主要从架构及设计思路、基于 Flink SQL 平台的实时数仓的实践及使用案例、后续规划。
十年磨一剑,阿里巴巴推荐与搜索深度学习服务体系AI·OS在云栖大会正式亮相
2018年9月21~22日,在以“驱动数字科技”为主题的云栖大会上,阿里巴巴搜索事业部特别推出了“搜索推荐专场”,“推荐与搜索引擎AI·OS专场”,深度参与了这场科技盛宴。 阿里巴巴推荐与搜索引擎平台支持了包括淘宝、天猫、菜鸟、优酷以及海外电商在内的整个阿里集团的推荐与搜索业务,引导成交占据了集团GMV的绝大部分份额。
Docker时代——如何实现日志数据一键上云
1 准备工作 1.1 开通MaxCompute服务 参考使用MaxCompute的准备工作 1.2 开通Datahub服务 进入Datahub Web控制台,创建project(注意:首次使用的用户需要申请开通) 1.3 安装Docker环境 Docker官方说明了在不同操作系统下安装Docker的方法,您可以点击此处查看。
云上游戏数据分析实践
数据分析和游戏的生命周期与盈利息息相关,同时数据分析对游戏的运维也起到了至关重要的作用,精确的数据分析可以延长游戏的生命和帮助其盈利。本文针对游戏行业的数据特点,结合游戏数据分析的现状,对数据分析上云的技术选型、结合数加大数据计算服务MaxCompute(原ODPS)、SLS、RDS、DPC等产品和
实时计算无线数据分析
案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总 本文为您介绍实时计算在无线数据分析中的应用。阿里云实时计算可以为无线App的数据分析场景实时化助力,帮助您做到实时化分析手机AP的各项指标,包括App版本分布情况、Crash检测和等。
尝新阿里云E-MapReduce MetaService服务
阿里云E-MapReduce从EMR-2.1.0版本镜像开始,将在VPC集群中提供MetaService服务。
80后阿里P10,“关老板”如何带着MaxCompute一路升级?
我是个幸运的人。虽然幸运不能被复制,但是眼光和努力可以。 “我是一个兴趣驱动型的人,职业生涯总的来说,还算挺幸运的,做自己感兴趣的事情,走上IT这一行……” 特别久以前,大概初中的时候有了自己的第一台电脑,大名鼎鼎的486,带一个数学协处理器,主频266MHz,内存有4MB。”
数据湖正在成为新的数据仓库
新一代数据仓库实际上是数据湖,对那些用于构建和训练机器学习模型的清洗,整合和验证的数据进行管理。例如,去年秋天在Amazon re:Invent 大会上,亚马逊网络服务公布了AWS Lake Formation。
Apache Flink 漫谈系列(13) - Table API 概述
什么是Table API 在《Apache Flink 漫谈系列(08) - SQL概览》中我们概要的向大家介绍了什么是好SQL,SQL和Table API是Apache Flink中的同一层次的API抽象,如下图所示: Apache Flink 针对不同的用户场景提供了三层用户API,最下层ProcessFunction API可以对State,Timer等复杂机制进行有效的控制,但用户使用的便捷性很弱,也就是说即使很简单统计逻辑,也要较多的代码开发。
计算与存储分离实践—swift消息系统
swift是搜索事业部自主研发分布式消息系统,它的主要存储基于分布式文件系统,资源需求基于分布式调度系统。swift能支持每秒数亿的消息传递,支持PB级消息的存储。
5块钱低成本阿里云大数据生态协同过滤推荐系统实战
前情提要 人工智能千千万,没法落地都白干。自从上次老司机用神经网络训练了热狗识别模型以后,群众们表示想看一波更加接地气,最好是那种能10分钟上手,一辈子受用的模型。这次,我们就通过某著名电商公司的公开数据集,在阿里云大数据生态之下快速构建一个基于协同过滤的推荐系统! 推荐系统大家都不陌生,早就已经和大家的生活息息相关。
MaxCompute分区表和非分区表使用对比
本文我们将通过对有同样数据量、表结构除分区列其他都一模一样的表,从查询计算、写入、删除数据几个简单操作进行对比,了解MaxCompute分区表和非分区表在使用上有什么差异。 在介绍之前,需要大家先了解MaxCompute分区的概念。
Mars 是什么、能做什么、如何做的——记 Mars 在 PyCon China 2018 上的分享
最近,在 PyCon China 2018 的北京主会场、成都和杭州分会场都分享了我们最新的工作 Mars,基于矩阵的统一计算框架。本文会以文字的形式对 PyCon 中国上的分享再进行一次阐述。 听到 Mars,很多第一次听说的同学都会灵魂三问:Mars 是什么,能做什么,怎么做的。
MaxCompute 2.0 基于BigBench标准的最新测试进展
10月14日,2017杭州云栖大会·阿里云大数据计算服务(MaxCompute)专场,阿里云技术专家路璐带来《MaxCompute基于BigBench标准的最新测试进展》分享。 在11日的主论坛上,MaxCompute做了敢为人先、引领潮流BigBench On MaxCompute2.0的重磅发布,意味着MaxCompute成为第一个做到100TB数据规模的BigBench,并且在100T数据规模的Qpm达到7830Qpm,成为第一个达到7000分的大数据引擎。
2684亿销售额背后的阿里AI技术
刚刚结束的双十一,天猫交易额达到 2684 亿元,较去年同比增长 25.7%。这一结果背后,云计算、人工智能等技术以及阿里巴巴工程师们的努力功不可没。在正在召开的 AICon 全球人工智能与机器学习技术大会 现场,阿里云智能计算平台事业部研究员林伟介绍了阿里基于飞天 AI 平台的人工智能技术及能力,揭开双 11 大规模交易场景下,阿里人工智能技术的神秘面纱。
使用DataX同步MaxCompute数据到TableStore(原OTS)优化指南
现在越来越多的技术架构下会组合使用MaxCompute和TableStore,用MaxCompute作大数据分析,计算的结果会导出到TableStore提供在线访问。MaxCompute提供海量数据计算的能力,而TableStore提供海量数据高并发低延迟读写的能力。
还在用Hadoop么?Hadoop服务器造成5PB数据泄露,中国、美国受波及最大!
根据John Matherly的说法,不适当地配置HDFS服务器——主要是Hadoop安装——将会泄露超过5PB的信息。John Matherly是用于发现互联网设备的搜索引擎Shodan的创始人。 这位专家说,他发现了4487个HDFS服务器实例,这些服务器可通过公共IP地址获得,而且不需要身份验证。
SQL优化器原理-Shuffle优化
分布式系统中,Shuffle是重操作之一,直接影响到了SQL运行时的效率。Join、Aggregate等操作符都需要借助Shuffle操作符,确保相同数据分发到同一机器或Instance中,才可以进行Join、Aggregate操作。
基于MaxCompute的图计算实践分享-解析图加载过程
一、前言 MaxCompute Graph 是基于飞天平台实现的面向迭代的图处理框架,为用户提供了类似于 Pregel 的编程接口。MaxCompute Graph(以下简称 Graph )作业包含图加载和计算两个阶段: 加载,将存储在表中的数据载入到内存中,以点和边的形式存在; 计算,遍历内
【技术分享】《深入理解Elasticsearch》读书笔记
Elasticsearch广泛应用于全文检索和实时日志分析场景。为了帮助开发者更好的理解和应用Elasticsearch和ELK相关技术,小编将甄选一系列技术干货分享给大家。本文作者在Elastisearch系统搭建和应用领域有深入的实践经验,现转载作者《深入理解Elasticsearch》读书笔记,梳理Elasticsearch使用过程中的一些技术难点。
体系结构顶会 ASPLOS 2017 最佳论文出炉,阿里云周靖人主旨演讲
2017年4月11日晚,在西安举行的架构体系的顶级会议ASPLOS(面向编程语言和操作系统的架构支持会议,Architectural Support for Programming Languages and Operating Systems)公布了最佳论文、最有影响力论文和 Test of Time 几项大奖。
MaxCompute( 原ODPS)下的表分区解释
大数据计算服务(MaxCompute,原名 ODPS,https://www.aliyun.com/product/odps)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。
【云上ELK系列】阿里云Elasticsearch的Apache日志分析实践
阿里云Elasticsearch采集上游数据的方式有很多种,其中有一个与开源完全兼容的方案:通过logstash及logstash周围的强大的plugin实现数据采集。 首先我们需要在ECS中来安装部署logstash,购买阿里云ECS服务,准备1.8以上版本的JDK。
如何分析及处理 Flink 反压?
反压(backpressure)是实时计算应用开发中,特别是流式计算中,十分常见的问题。反压意味着数据管道中某个节点成为瓶颈,处理速率跟不上上游发送数据的速率,而需要对上游进行限速。
通过DataWorks数据集成归档日志服务数据至MaxCompute进行离线分析
通过DataWorks归档日志服务数据至MaxCompute
MaxCompute多团队协同数据开发项目管理最佳实践
本文主要介绍厦门美柚科技有限公司在基于MaxCompute多团队协同数据开发项目管理,权限管理,以及数据,资源共享的最佳实践
借助数加,原来需要2-3天的单维度数据处理时间,目前仅需3-6小时,研发周期更短,产品需求符合度更高。
“在原来自建的环境里进行一个维度的数据处理大约需要 2-3天时间,而使用数加平台处理相同数据只需要 3-6 个小时。这些效率的提升可以缩短数据分析应用产品的研发周期,并能更好的提高这些产品的需求符合度。
Spark Operator浅析
Spark Operator浅析 本文介绍Spark Operator的设计和实现相关的内容. Spark运行时架构 经过近几年的高速发展,分布式计算框架的架构逐渐趋同. 资源管理模块作为其中最通用的模块逐渐与框架解耦,独立成通用的组件.
PTC联手阿里云共同提高中国工业4.0认可度
“很多企业对一些新事物的接受速度不够快,这不能怪我们的企业家,这其实是因为我们整个市场要做这样的转型,这本身就是一个比较复杂和需要下定决心的事情。”PTC(美国参数软件公司)全球副总裁兼中国区总裁寿宇澄这样评价中国工业企业对转型的犹疑态度。
基于MaxCompute的图计算实践分享-Aggregator机制介绍
Aggregator是MaxCompute-GRAPH作业中常用的feature之一,特别是解决机器学习问题时。MaxCompute-GRAPH中Aggregator用于汇总并处理全局信息。本文将详细介绍的Aggregator的执行机制、相关API,并以Kmeans Clustering为例子说明Aggregator的具体用法。
索引压缩算法New PForDelta简介以及使用SIMD技术的优化
New PForDelta算法介绍 倒排索引的数据包括docid, term frequency, term position等,往往会占用很大的磁盘空间,需要进行压缩。压缩算法需要考虑两点:压缩效果和解压缩效率。
报警分析云上集成解决方案
为了方便用户云上分析大数据的需求,报警分析云上集成解决方案提供了一系列的数据分析产品,可以帮助各类客户快速轻松地构建和部署大数据分析应用。
使用E-MapReduce服务处理阿里云文件存储(NAS)的数据
给大家介绍一个使用场景,可以将E-MapReduce的Hadoop作业和文件存储(NAS)结合在一起,发挥分布式存储和分布式计算在一起的威力
通过Fluentd实时上传数据到DataHub实践
本文把我通过Flunetd,把数据上传到DataHub的配置过程记录下来,希望对大家在配置中能有帮助。
Structured Streaming VS Flink
Flink是标准的实时处理引擎,而且Spark的两个模块Spark Streaming和Structured Streaming都是基于微批处理的,不过现在Spark Streaming已经非常稳定基本都没有更新了,然后重点移到spark sql和structured Streaming了。
Apache Flink 进阶(八):详解 Metrics 原理与实战
Flink 提供的 Metrics 可以在 Flink 内部收集一些指标,通过这些指标让开发人员更好地理解作业或集群的状态。由于集群运行后很难发现内部的实际状况,跑得慢或快,是否异常等,开发人员无法实时查看所有的 Task 日志,比如作业很大或者有很多作业的情况下,该如何处理?此时 Metrics 可以很好的帮助开发人员了解作业的当前状况。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。