主动式智能导购AI助手构建方案评测
阿里云推出的主动式智能导购AI助手方案,基于百炼大模型和Multi-Agent架构,通过多轮对话收集用户需求,实现精准商品推荐。其优势包括主动交互、灵活可扩展的架构、低代码开发及快速部署。商家可在10分钟内完成部署,并享受低成本试用。尽管技术细节尚需完善,该方案为电商提供了高效的客户服务工具,未来有望在个性化推荐和多模态交互方面取得突破。
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
超值选择:阿里云Elasticsearch Serverless在企业数据检索与分析中的高性能与灵活性
本文介绍了阿里云Elasticsearch Serverless服务的高性价比与高度弹性灵活性。
淘宝直播间弹幕API接口(taobao.item_video_barrage)
淘宝直播间弹幕 API(`taobao.item_video_barrage`)用于获取直播间的弹幕数据。通过指定直播间 ID 和模式参数(如 `start` 建立连接、`refresh` 获取弹幕),可以获取弹幕消息列表、直播间信息等。响应数据为 JSON 格式,包含状态码、直播间 ID、连接状态和弹幕详情。使用时需注意权限限制、接口稳定性和数据处理。
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
淘宝天猫商品评论数据接口丨淘宝 API 实时接口指南
淘宝天猫商品评论数据接口(Taobao.item_review)提供全面的评论信息,包括文字、图片、视频评论、评分、追评等,支持实时更新和高效筛选。用户可基于此接口进行数据分析,支持情感分析、用户画像构建等,同时确保数据使用的合规性和安全性。使用步骤包括注册开发者账号、创建应用获取 API 密钥、发送 API 请求并解析返回数据。适用于电商商家、市场分析人员和消费者。
静态IP代理的最佳实践如何选择合适的方法
在信息化时代,网络成为生活的重要部分,为保护个人信息安全,使用静态IP代理变得越来越普遍。本文介绍了五种实现静态IP代理的方法:租用服务、自建服务器、云服务、ISP提供及转发代理,帮助用户根据需求选择最合适的方式。
从方向导数到梯度:深度学习中的关键数学概念详解
方向导数衡量函数在特定方向上的变化率,其值可通过梯度与方向向量的点积或构造辅助函数求得。梯度则是由偏导数组成的向量,指向函数值增长最快的方向,其模长等于最速上升方向上的方向导数。这两者的关系在多维函数分析中至关重要,广泛应用于优化算法等领域。
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
如何建立自己的体育直播平台-源码搭建全流程
随着在线观看体育赛事用户的爆发式增长,搭建专业体育直播应用成为趋势。利用如熊猫比分的全链路解决方案,创业者可快速启动平台。主要步骤包括前期技术准备(赛事API接口、服务器配置、域名选择、短信服务、云直播服务)、定制化(LOGO标识、功能测试与优化)及正式上线与运营(推广、持续更新、主播入驻)。此方案使创业者能高效进入体育市场,抓住机遇。
IoU已经out了,试试这几个变体:GIoU、DIoU和CIoU介绍与对比分析
本文探讨了目标检测中常用的交并比(IoU)及其变体,包括广义交并比(GIoU)、距离交并比(DIoU)和完全交并比(CIoU)。这些指标不仅提高了模型在处理不重叠、距离较远或形状差异大的边界框时的表现,还为模型的学习过程提供了更深入的洞察。文章详细解释了各指标的计算方法及应用场景,并提供了相应的代码示例,帮助读者更好地理解和应用这些先进的评估指标。
1688 商品详情数据接口(1688.item_get)
1688商品详情数据接口(1688.item_get)由阿里巴巴提供,旨在帮助开发者获取1688网站上的商品详细信息。开发者需先注册并创建应用获取API凭证,随后申请调用权限。接口通过必填与可选参数组合使用,如app_key、timestamp、fields等,以JSON格式返回商品详情,包括ID、名称、价格、库存等信息。
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
【赵渝强老师】Yarn的资源调度策略
Yarn作为资源和任务调度平台,支持多个应用程序同时运行,如MapReduce、Spark和Flink等。Yarn的资源调度方式主要包括FIFO Scheduler(先来先服务)、Capacity Scheduler(容量调度)和Fair Scheduler(公平调度)。FIFO Scheduler按任务提交顺序调度;Capacity Scheduler通过队列管理资源,支持多租户共享;Fair Scheduler则根据任务权重动态分配资源,确保公平性。
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
分享一些在 1688 上找一件代发商品的技巧
在1688上找一件代发商品需明确自身需求与定位,筛选可靠供应商,研究商品信息,利用精准搜索和平台推荐,关注活动,并与供应商充分沟通,确保合作顺畅。
什么是公网IP和内网IP
【10月更文挑战第27天】公网IP与内网IP是网络通信中的两个重要概念。公网IP是互联网上的唯一标识,而内网IP仅在局域网内部有效,用于局域网内的设备通信。由于IPv4地址资源有限,通常一个公司或家庭只有一个公网IP,内部设备通过NAT(网络地址转换)技术共享该公网IP访问互联网。这样不仅节省了IP资源,还提高了网络安全性和稳定性。
如果您干不动跨境外贸独立站,可以来看看反向海淘代购模式
反向海淘代购模式是指海外消费者通过国内电商平台购买中国商品,再由代购方负责采购、质检、包装和国际运输。该模式商品丰富、价格竞争力强,能满足个性化需求,但也面临物流成本高、海关政策复杂等挑战。
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
淘宝API接口( item_detail - 淘宝商品详情查询)
淘宝商品详情查询 API(item_detail)用于获取淘宝商品的详细信息。请求参数包括商品唯一 ID(num_iid)和是否获取促销价(is_promotion)。响应参数包含商品标题、价格、库存、图片链接、品牌等详细信息。
API和SDK的区别
API(应用程序编程接口)和SDK(软件开发工具包)的主要区别在于范围、内容、抽象程度及使用方式。API定义了软件组件间的交互规则,范围较窄,更抽象;而SDK提供了一整套开发工具,包括API、编译器、调试器等,范围广泛,具体且实用,有助于提高开发效率。
精通Selenium:从基础到高级的网页自动化测试策略
【10月更文挑战第6天】随着Web应用变得越来越复杂,手动进行功能和兼容性测试变得既耗时又容易出错。自动化测试因此成为了现代软件开发不可或缺的一部分。Selenium是一个强大的工具集,它支持多种编程语言(包括Python),允许开发者编写脚本来模拟用户与Web页面的交互。本文将带领读者从Selenium的基础知识出发,逐步深入到高级的应用场景,通过丰富的代码示例来展示如何高效地进行网页自动化测试。
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
图像数据增强库综述:10个强大图像增强工具对比与分析
在深度学习和计算机视觉领域,数据增强是提升模型性能和泛化能力的关键技术。本文全面介绍了10个广泛使用的图像数据增强库,分析其特点和适用场景,帮助研究人员和开发者选择最适合需求的工具。这些库包括高性能的GPU加速解决方案(如Nvidia DALI)、灵活多功能的Albumentations和Imgaug,以及专注于特定框架的Kornia和Torchvision Transforms。通过详细比较各库的功能、特点和适用场景,本文为不同需求的用户提供丰富的选择,助力深度学习项目取得更好的效果。选择合适的数据增强库需考虑性能需求、任务类型、框架兼容性及易用性等因素。
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
ChunkServer 原理与架构详解
【8月更文第30天】在分布式文件系统中,ChunkServer 是一个重要的组件,负责存储文件系统中的数据块(chunks)。ChunkServer 的设计和实现对于确保数据的高可用性、一致性和持久性至关重要。本文将深入探讨 ChunkServer 的核心原理和内部架构设计,并通过代码示例来说明其实现细节。
ONNX 与安全:保护模型免受攻击
【8月更文第27天】随着人工智能和机器学习模型的应用越来越广泛,模型的安全性也成为了人们关注的重点。Open Neural Network Exchange (ONNX) 作为一种开放的标准格式,不仅可以促进不同框架之间的模型共享,还面临着如何保护模型不被恶意攻击的风险。本文将探讨 ONNX 在模型安全方面的考虑,以及如何利用 ONNX 和其他技术来保护模型免受攻击。
黑神话:悟空中的AI行为树设计
【8月更文第26天】在《黑神话:悟空》这款游戏中,NPC(非玩家角色)的智能行为对于创造一个富有沉浸感的游戏世界至关重要。为了实现复杂的敌人行为模式,游戏开发团队采用了行为树作为NPC决策的核心架构。本文将详细介绍《黑神话:悟空》中NPC AI的设计原理,特别关注行为树的设计与实现。
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
如何使用 PHP Simple HTML DOM Parser 轻松获取网页中的特定数据
本文介绍了使用PHP Simple HTML DOM Parser进行网页数据抓取的方法,尤其适用于从懂车帝二手车网站提取汽车品牌、价格和里程等关键信息。首先,安装并配置所需库,使用代理IP和设置cookie与useragent来模拟用户行为,避免被封。然后,通过编写PHP脚本,利用cURL获取网页内容,解析HTML并提取所需数据,最终将数据保存至CSV文件。文章强调了正确配置代理和用户代理的重要性,并提供了完整的PHP代码示例,以帮助读者理解和应用网页抓取技术。
AI基础科普:揭开人工智能的神秘面纱
人工智能(Artificial Intelligence, AI)已经成为现代科技的热门话题,影响着我们的生活方方面面。从语音助手到自动驾驶汽车,AI正在以惊人的速度改变着世界。然而,对于许多人来说,AI仍然是一个模糊的概念。本文将通过通俗易懂的语言和丰富的图文,全面介绍AI的基础知识,帮助读者更好地理解这个激动人心的领域。
如何解决ChromeDriver 126找不到chromedriver.exe问题
当使用Selenium与ChromeDriver 126时,遇到`chromedriver.exe`找不到的错误,可能是因为版本不匹配、文件路径错误或系统设置不当。解决方法包括:匹配Chrome浏览器版本下载ChromeDriver,确保文件在正确路径且有执行权限,以及调整系统设置允许执行。示例代码展示了如何设置代理IP、user-agent和cookie来运行Selenium爬虫。通过这些步骤,可以确保爬虫程序顺利运行。
MaxCompute操作报错合集之返回错误代码ODPS-0110999,是什么原因
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
大语言模型的直接偏好优化(DPO)对齐在PAI-QuickStart实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对DPO算法提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现大语言模型的DPO对齐微调。本文以阿里云最近推出的开源大型语言模型Qwen2(通义千问2)系列为例,介绍如何在PAI-QuickStart实现Qwen2的DPO算法对齐微调。
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
Python基于孤立森林算法(IsolationForest)实现数据异常值检测项目实战
Python基于孤立森林算法(IsolationForest)实现数据异常值检测项目实战
基于Python实现xgboost回归模型(XGBRegressor)项目实战
基于Python实现xgboost回归模型(XGBRegressor)项目实战
淘宝商品评论数据采集教程丨淘宝商品评论数据接口Taobao.item_review
`淘宝开放平台的Taobao.item_review API让开发者能获取商品评论。步骤包括注册开发者账号,创建应用获取API密钥,理解和使用请求参数,签名验证并发送HTTP请求。返回的JSON数据包含评论详情,需解析并清洗后分析。注意频率限制和用户隐私保护。此接口助力商家分析用户反馈,优化经营策略。`
非对称加密的日常实践应用:以RSA加密为例
**RSA加密简介与Python实现** RSA,一种非对称加密技术,基于大数因子分解,用于数据加密和完整性保护。本文介绍了RSA基本原理,包括密钥生成(选取大质数p和q,计算n和φ(n),选择公钥指数e和私钥指数d),并展示了使用Python `cryptography` 库生成密钥对、加密和解密消息的代码示例。通过这些步骤,读者可理解RSA在网络安全中的应用,如HTTPS和数字签名。
三种常见的加密算法:MD5、对称加密与非对称加密的比较与应用
网络安全聚焦加密算法:MD5用于数据完整性校验,易受碰撞攻击;对称加密如AES快速高效,密钥管理关键;非对称加密如RSA提供身份验证,速度慢但安全。三种算法各有所长,适用场景各异,安全与效率需权衡。【6月更文挑战第17天】
Emacs Verilog mode 简单使用指南
【6月更文挑战第17天】Emacs Verilog mode 提升Verilog编程体验,提供语法高亮、代码补全、自动缩进等功能。安装可通过`M-x package-install RET verilog-mode`。常见问题包括补全不生效、高亮不准确,可通过调整配置解决。支持模板插入、代码折叠、错误高亮、代码跳转。通过个性化配置、整合Git、集成其他工具和社区资源,实现高效Verilog开发。Emacs学习曲线虽陡,但效能提升显著。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。