微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
基于springboot的电影购票管理系统
本系统基于Spring Boot框架,结合Vue、Java与MySQL技术,实现电影信息管理、在线选座、购票支付等核心功能,提升观众购票体验与影院管理效率,推动电影产业数字化发展。
基于springboot的快递分拣管理系统
本系统基于SpringBoot框架,结合Java、MySQL与Vue技术,构建智能化快递分拣管理平台。通过自动化识别、精准分拣与实时跟踪,提升分拣效率与准确性,降低人力成本,推动快递行业向智能化、高效化转型,助力电商物流高质量发展。
用Context Offloading解决AI Agent上下文污染,提升推理准确性
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
AMD Ryzen AI Max+ 395四机并联:大语言模型集群推理深度测试
本文介绍了使用四块Framework主板构建AI推理集群的过程,并基于AMD Ryzen AI Max+ 395处理器进行大语言模型推理性能测试,重点评估其并行推理能力及集群表现。
深度剖析epub reader for mac:原理、兼容性与工程实现全解读
数字内容正重塑阅读方式,而EPUB作为开放电子书标准,在Mac平台的体验却参差不齐。本文从工程师视角解析EPUB文件结构、渲染机制与跨平台兼容难题,探讨为何同一EPUB文件在不同阅读器中呈现效果迥异,涉及字体、排版、目录、多媒体支持等技术细节,并结合用户反馈与开发实践,揭示提升EPUB阅读体验的关键路径。
值得买商品详情API响应数据解析
“什么值得买”商品详情API支持获取商品标题、价格、促销信息等核心数据,适用于价格监控与优惠分析。提供商品基础信息、实时价格、评价数据及库存状态监控,助力电商数据采集与分析。
解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案
本文介绍了一种基于用户意图的提示词优化系统,利用多智能体架构实现自动化优化,提升少样本学习场景下的提示词质量与模型匹配度。系统通过专用智能体协同工作,识别并修复逻辑矛盾、格式不清及示例不一致等问题,结合Pydantic结构化数据模型与OpenAI评估框架,实现高效、可扩展的提示词优化流程。该方案显著减少了人工干预,增强了系统效率与输出一致性,适用于复杂研究任务与深度AI应用。
Java 大视界 -- Java 大数据在智慧文旅旅游线路规划与游客流量均衡调控中的应用实践(196)
本实践案例深入探讨了Java大数据技术在智慧文旅中的创新应用,聚焦旅游线路规划与游客流量调控难题。通过整合多源数据、构建用户画像、开发个性化推荐算法及流量预测模型,实现了旅游线路的精准推荐与流量的科学调控。在某旅游城市的落地实践中,游客满意度显著提升,景区流量分布更加均衡,充分展现了Java大数据技术在推动文旅产业智能化升级中的核心价值与广阔前景。
MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
Fluss on 鲲鹏 openEuler 大数据实战
本文介绍了基于华为鲲鹏ARM架构服务器与openEuler操作系统,构建包含HDFS、ZooKeeper、Flink、Fluss及Paimon的实时大数据环境的完整实战过程。涵盖了软硬件配置、组件部署、集群规划、环境变量设置、安全认证及启停脚本编写等内容,适用于企业级实时数据平台搭建与运维场景。
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
Java 大学期末考试真题与答案 含知识点总结 重难点归纳及题库汇总 Java 期末备考资料
本文汇总了Java大学期末考试相关资料,包含真题与答案、知识点总结、重难点归纳及题库,涵盖Java基础、面向对象编程、异常处理、IO流等内容,并提供完整代码示例与技术方案,助你高效复习备考。
数据分布不明确?5个方法识别数据分布,快速找到数据的真实规律
本文深入探讨了数据科学中分布识别的重要性及其实践方法。作为数据分析的基础环节,分布识别影响后续模型性能与分析可靠性。文章从直方图的可视化入手,介绍如何通过Python代码实现分布特征的初步观察,并系统化地讲解参数估计、统计检验及distfit库的应用。同时,针对离散数据、非参数方法和Bootstrap验证等专题展开讨论,强调业务逻辑与统计结果结合的重要性。最后指出,正确识别分布有助于异常检测、数据生成及预测分析等领域,为决策提供可靠依据。作者倡导在实践中平衡模型复杂度与实用性,重视对数据本质的理解。
1688图片搜索API接口解析与 Python实战指南
1688图片搜索API接口支持通过上传图片搜索相似商品,适用于电商及商品推荐场景。用户上传图片后,经图像识别提取特征并生成关键词,调用接口返回包含商品ID、标题和价格的相似商品列表。该接口需提供图片URL或Base64编码数据,还可附加分页与筛选参数。示例代码展示Python调用方法,调试时建议使用沙箱环境测试稳定性,并优化性能与错误处理逻辑。
云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用
本文详细介绍了如何使用 PAI-LangStudio 和 Qwen3 构建基于 RAG 和联网搜索 的 AI 智能问答应用。该应用通过将 RAG、web search 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了额外的联网搜索和特定领域知识库检索的能力,提升了智能回答的效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
SWEET-RL是一种基于训练时信息的逐步评估算法,显著提升了多轮大型语言模型(LLM)代理在强化学习中的成功率。相比现有方法,SWEET-RL将成功率提高6%,使小型开源模型如Llama-3.1-8B达到甚至超越GPT-4O等大型专有模型性能。通过非对称Actor-Critic结构、创新优势函数参数化及两阶段训练流程,SWEET-RL优化了信用分配机制与泛化能力,降低了计算成本。ColBench基准测试显示,SWEET-RL在后端编程和前端设计任务中表现卓越,为AI代理训练技术带来突破性进展。
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
window系统下安装elk
本文介绍了Elasticsearch、Logstash和Kibana(统称ELK栈)8.17.3版本的安装与配置流程。主要内容包括: - **Elasticsearch**:详细描述了从下载到启动服务的步骤,以及`elasticsearch.yml`的关键配置项,并提供了Postman操作示例及常见问题解决方案。 - **Logstash**:涵盖了插件安装、配置文件`logstash.conf`编写及其启动命令。 - **Kibana**:讲解了下载、配置`kibana.yml`和启动过程,确保与Elasticsearch正确连接。
使用PHP接入纯真IP库:实现IP地址地理位置查询
本文介绍了如何使用PHP接入纯真IP库(QQWry),实现IP地址的地理位置查询。纯真IP库是一个轻量级的IP数据库,数据格式简单,查询速度快,适合Web应用。首先,下载并放置`QQWry.dat`文件到项目目录。接着,通过编写PHP类解析该文件,实现IP查询功能。最后,提供了一个完整的案例演示,展示如何查询IP地址对应的国家和地区信息。该工具适用于用户地理位置分析、访问日志分析和风控系统等场景,具有轻量级、查询速度快、数据更新方便等优点。
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
Meta-CoT:通过元链式思考增强大型语言模型的推理能力
大型语言模型(LLMs)在处理复杂推理任务时面临挑战,尤其在高级数学和抽象问题解决方面表现不足。为弥补这一差距,研究人员引入了元链式思考(Meta-CoT),该方法通过引入搜索、验证和回溯机制,使LLMs能够模拟人类的系统2思维,实现迭代和审慎推理。实验证明,Meta-CoT显著提升了LLMs在复杂任务中的表现,推动了AI从模式识别向更深层次的逻辑推理转变。
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
Paimon 1.0: Unified Lake Format for Data + AI
本文整理自阿里云智能开源湖存储负责人李劲松在Flink Forward Asia 2024上海站主论坛的演讲。Apache Paimon于今年3月成为顶级项目,计划发布1.0版本,目标是Unified Lake Format for Data + AI,解决数据处理与AI应用中的关键问题。Paimon结合Flink打造Streaming Lakehouse解决方案,已在阿里巴巴集团及多个行业中广泛应用。来自淘天、抖音和vivo的嘉宾分享了基于Paimon + Flink技术栈的数据湖实时处理与分析实践案例。内容涵盖大数据从业者面临的痛点、Paimon的发展历程及大厂的应用经验。
Flink 2.0 存算分离状态存储 — ForSt DB
本文整理自阿里云技术专家兰兆千在Flink Forward Asia 2024上的分享,主要介绍Flink 2.0的存算分离架构、全新状态存储内核ForSt DB及工作进展与未来展望。Flink 2.0通过存算分离解决了本地磁盘瓶颈、检查点资源尖峰和作业恢复速度慢等问题,提升了云原生部署能力。ForSt DB作为嵌入式Key-value存储内核,支持远端读写、批量并发优化和快速检查点等功能。性能测试表明,ForSt在异步访问和本地缓存支持下表现卓越。未来,Flink将继续完善SQL Operator的异步优化,并引入更多流特性支持。
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
淘宝直播间弹幕API接口(taobao.item_video_barrage)
淘宝直播间弹幕 API(`taobao.item_video_barrage`)用于获取直播间的弹幕数据。通过指定直播间 ID 和模式参数(如 `start` 建立连接、`refresh` 获取弹幕),可以获取弹幕消息列表、直播间信息等。响应数据为 JSON 格式,包含状态码、直播间 ID、连接状态和弹幕详情。使用时需注意权限限制、接口稳定性和数据处理。
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
在本地微调大规模语言模型时,由于GPU显存限制,通常采用梯度累积技术来模拟大批次训练。然而,实际研究表明,梯度累积方法在主流深度学习框架中会导致模型性能显著下降,尤其是在多GPU环境中。本文详细探讨了梯度累积的基本原理、应用场景及存在的问题,并通过实验验证了修正方案的有效性。研究指出,该问题可能在过去多年中一直存在且未被发现,影响了模型的训练效果。
Pandas中批量转换object至float的高效方法
在数据分析中,常需将Pandas DataFrame中的object类型列转换为float类型以进行数值计算。本文介绍如何使用`pd.to_numeric`函数高效转换,并处理非数字值,包括用0或平均值填充NaN值的方法。
Selenium 4新特性解析:关联定位器及其他创新功能
【10月更文挑战第6天】Selenium 是一个强大的自动化测试工具,广泛用于Web应用程序的测试。随着Selenium 4的发布,它引入了许多新特性和改进,使得编写和维护自动化脚本变得更加容易。本文将深入探讨Selenium 4的一些关键新特性,特别是关联定位器(Relative Locators),以及其他一些重要的创新功能。
人工智能伦理与监管:构建负责任的AI未来
【10月更文挑战第3天】随着人工智能(AI)技术的快速发展,其在社会各领域的应用日益广泛。然而,AI的广泛应用也带来了一系列伦理和监管挑战。本文旨在探讨AI的伦理问题,分析现有的监管框架,并提出构建负责任AI未来的建议。同时,本文将提供代码示例,展示如何在实践中应用这些原则。
云栖实录 | MaxCompute 迈向下一代的智能云数仓
2024年云栖大会上,阿里云核心自研云原生智能数据仓库产品MaxCompute,在经过一年的深度打磨后,推出了其迈向下一代智能云数据仓的系列主题分享。此次产品发布,充分展示MaxCompute产品领先行业的云数据产品发展理念与核心优势。
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著
Optuna,广受欢迎的超参数优化框架,近日发布了其第四个主要版本。自2018年问世以来,Optuna迅速成为机器学习领域的关键工具,目前拥有10,000+ GitHub星标、每月300万+下载量、16,000+代码库使用、5,000+论文引用及18,000+ Kaggle使用。Optuna 4.0引入了OptunaHub平台,支持功能共享;正式推出Artifact Store管理生成文件;稳定支持NFS的JournalStorage实现分布式优化;显著加速多目标TPESampler,并引入新Terminator算法。
阿里云 EMR StarRocks 在七猫的应用和实践
本文整理自七猫资深大数据架构师蒋乾老师在 《阿里云 x StarRocks:极速湖仓第二季—上海站》的分享。
压缩大型语言模型(LLMs):缩小10倍、性能保持不变
尽管大规模语言模型(LLMs)在多种应用场景中表现出色,但其庞大的规模也带来了实际部署难题。本文探讨了通过模型压缩技术解决这些问题的方法,介绍了量化、剪枝和知识蒸馏三种主要压缩技术,并通过具体Python代码示例展示了如何将一个100M参数的文本分类模型压缩至52.8M参数,再通过4位量化进一步减小至原来的1/7,同时保持甚至提升性能。示例代码展示了从数据预处理、模型训练到评估的完整流程,证明了压缩技术的有效性。
构建可复用的 Jupyter 模板和插件:提高工作效率的最佳实践
【8月更文第29天】Jupyter Notebook 是一个广泛使用的交互式计算环境,支持多种编程语言。它不仅用于数据分析、可视化和机器学习项目,也是教学和科研的理想工具。然而,随着使用频率的增加,重复编写相似的代码和设置变得既耗时又低效。通过创建可复用的 Jupyter 模板和插件,我们可以显著提高工作效率。
大规模数据处理的最佳实践:使用 Dask 进行高效并行计算
【8月更文第29天】在大数据时代,高效地处理大规模数据集是至关重要的。Python 社区提供了一些强大的工具来帮助开发者进行并行和分布式计算,其中之一就是 Dask。本文将详细介绍如何使用 Dask 来优化大规模数据集的处理效率,并提供一些实用的代码示例。
利用AI实现情感分析的实践与探索
本文主要介绍了利用AI技术进行情感分析的实践过程。通过阿里云自然语言处理服务(NLP)提供的情感分析API,结合Python编程语言和Jupyter Notebook开发环境,实现对社交媒体上产品评论的情感分析。具体步骤包括数据收集、预处理和调用API进行分析。示例代码展示了如何使用Python SDK调用API并获取情感分析结果。通过情感分析,企业能快速了解用户反馈,优化产品策略。未来,情感分析在客户服务、市场调研等领域将有更广泛应用,而阿里云平台为实现情感分析提供了便捷高效的工具和服务。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。