LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
CoAT: 基于蒙特卡洛树搜索和关联记忆的大模型推理能力优化框架
研究者提出了一种新的关联思维链(CoAT)方法,通过整合蒙特卡洛树搜索(MCTS)和关联记忆机制,提升大语言模型(LLMs)的推理能力。CoAT框架优化了MCTS算法,增强了结构化推理和动态知识整合,适用于复杂推理、多跳问答和代码生成等任务。实验结果显示,CoAT在精确匹配和F1分数上表现优异,超越了多个基线模型。然而,该方法在计算资源消耗和实时推理速度方面仍有改进空间。
京东商品SKU价格接口(Jd.item_get)丨京东API接口指南
京东商品SKU价格接口(Jd.item_get)是京东开放平台提供的API,用于获取商品详细信息及价格。开发者需先注册账号、申请权限并获取密钥,随后通过HTTP请求调用API,传入商品ID等参数,返回JSON格式的商品信息,包括价格、原价等。接口支持GET/POST方式,适用于Python等语言的开发环境。
随机性、熵与随机数生成器:解析伪随机数生成器(PRNG)和真随机数生成器(TRNG)
随机性在密码学、仿真和机器学习等领域中至关重要,本文探讨了随机性、熵的概念以及伪随机数生成器(PRNG)和真随机数生成器(TRNG)的原理和应用。PRNG通过算法生成看似随机的序列,适用于高效需求;TRNG利用物理过程生成真正随机数,适用于高安全需求。文章还讨论了两者的协同应用及其面临的挑战。
写歌词的技巧和方法基础篇:奠定创作基石,妙笔生词AI智能写歌词软件
写歌词是音乐创作中既具魅力又具挑战的任务。初学者需掌握基础技巧,如明确主题、合理布局结构、简洁生动的语言运用。《妙笔生词智能写歌词软件》提供 AI 智能写词、优化、取名等功能,帮助新手快速提升创作水平,为成功创作打下坚实基础。
streamlit (python构建web)之环境搭建
在微信订阅号中发现了一篇关于Streamlit的文章,激发了我的兴趣。Streamlit是一款专为数据科学家设计的开源Python库,能迅速将数据分析脚本转变为功能完备的Web应用。它简化了开发流程,支持轻松添加交互组件及动态展示图表、图像等,非常适合开发安全扫描工具。Streamlit基于Jupyter Notebook原理,通过Python脚本创建可视化和交互式的Web应用,易于部署分享。安装方法多样,可通过`pip install streamlit`快速安装,或通过Anaconda环境管理依赖。启动示例应用只需运行简单命令,即可体验自带的动画、绘图和数据展示等功能。
敏捷开发方法:理论与实践
【8月更文第22天】随着信息技术的发展,软件项目的复杂度不断提高,传统的瀑布式开发模式越来越难以适应快速变化的市场需求。为了解决这些问题,敏捷开发方法应运而生。本文将探讨敏捷开发的核心理念、敏捷宣言与原则、Scrum框架、Kanban方法以及相关的敏捷实践与工具。
不限量住宅IP代理指南2024版
住宅IP代理是一种特别的代理形式,它通过互联网服务提供商(ISP)池获取真实住宅用户的IP地址。在此背景下,住宅IP通常与特定的物理位置绑定,从而在网络上看起来像是真实用户。该服务为企业及个人执行数据密集型活动时提供了可靠的支持
生信分析代码之前还好好的,怎么就报错了 Error in Ops. data. frame(guide_loc, panel_loc) :'==' only defined for equally-sized data frames
执行 `DimPlot` 函数时遇到错误 `;Error in Ops. data. frame(g guides_loc, panel_loc) : '==' only defined for equally-sized data frames`。解决方案和办法
Flink 流批一体场景应用及落地情况
本文由阿里云 Flink 团队苏轩楠老师撰写,旨在介绍 Flink 流批一体在几个常见场景下的应用。
OpenZFS安装和使用
在Ubuntu 22.04.3 LTS上,本文介绍了OpenZFS的容错功能,如RAID-Z(类似RAID 5)、Mirror(类似RAID 1)、RAID-Z2和RAID-Z3,以及Hot Spare和Scrubbing。推荐使用RAID-Z1以平衡容量和预算。主要步骤包括安装zfsutils-linux,创建RAID-Z1存储池和ZFS文件系统,以及管理文件系统。此外,还提到了使用nfs共享ZFS文件系统的命令。
循环编码:时间序列中周期性特征的一种常用编码方式
循环编码是深度学习中处理周期性数据的一种技术,常用于时间序列预测。它将周期性特征(如小时、日、月)转换为网络可理解的形式,帮助模型识别周期性变化。传统的one-hot编码将时间特征转换为分类特征,而循环编码利用正弦和余弦转换,保持时间顺序信息。通过将时间戳转换为弧度并应用sin和cos,每个原始特征只映射到两个新特征,减少了特征数量。这种方法在神经网络中有效,但在树模型中可能需谨慎使用。
大数据项目管理:从需求分析到成果交付的全流程指南
【4月更文挑战第9天】本文介绍了大数据项目从需求分析到成果交付的全过程,包括需求收集与梳理、可行性分析、项目规划、数据准备与处理、系统开发与集成,以及成果交付与运维。文中通过实例展示了如何进行数据源接入、数据仓库建设、系统设计、算法开发,同时强调了需求理解、知识转移、系统运维的重要性。此外,还提供了Python和SQL代码片段,以说明具体技术实现。在大数据项目管理中,需结合业务和技术,灵活运用这些方法,确保项目的成功执行和价值实现。
【AAAI2024】M2SD:通过特征空间预构建策略重塑小样本类增量学习
小样本类增量学习代表了机器学习领域中一个高度挑战性的议题,其核心目标在于能够在仅有限的数据支持下识别新类别,同时保留对已学习类别的认知,而无须重新训练整个模型。这一目标在模型需适应新类别的同时使用有限训练数据的情况下尤为艰巨。针对上述挑战,我们提出了一种创新性策略,称为多重混合自蒸馏。旨在为类增量学习阶段准备一个具有高度可扩展性和包容性的特征空间。
选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试
OpenAI最近发布了他们的新一代嵌入模型*embedding v3*,他们将其描述为性能最好的嵌入模型,具有更高的多语言性能。这些模型分为两类:较小的称为text- embeddings -3-small,较大且功能更强大的称为text- embeddings -3-large。
Python新手常见问题五:如何避免模块导入错误?
在Python编程中,模块的导入是每个开发者必须掌握的基础技能之一。模块化设计让代码更加有序、可复用和易于维护。然而,在实际操作过程中,新手程序员常常会遇到一些关于模块导入的问题,导致程序无法正常运行。本文将探讨几种常见的模块导入场景及容易犯错的操作,并提供相应的解决方案。
哨兵2号分幅规则介绍及网格矢量下载
本文介绍哨兵2号(Sentinel-2)遥感影像数据的空间分幅规则,并提供其格网参考系(Military Grid Reference System,MGRS)的.kml格式文件、.shp格式矢量文件的下载方法~
大数据技术解析:Hadoop、Spark、Flink和数据湖的对比
Hadoop、Spark、Flink 和数据湖都在大数据处理领域有着重要的地位,但它们各自的优势和劣势也需考虑实际应用场景。Hadoop 适用于批处理任务,Spark 更适合实时分析,而 Flink 则强调低延迟的流式处理。数据湖则是存储和管理大规模多样性数据的选择。
ODPS是什么/阿里云一体化大数据平台ODPS的前世今生
ODPS(Open Data Processing Service),原是阿里云从 09年开始自研的大规模批量计算引擎,2016 年更名为MaxCompute。2022云栖大会上,阿里云ODPS全新升级为一体化大数据平台,存储、调度、元数据一体化融合 ,从 Processing 升级为 Platform,即 Open Data Platform and Service。提供了离线计算、实时交互式分析、机器学习等可扩展的智能计算引擎,满足用户多元化数据计算需求。
bilibili 实时平台的架构与实践
本文由 bilibili 大数据实时平台负责人郑志升分享,基于对 bilibili 实时计算的痛点分析,详细介绍了 bilibili Saber 实时计算平台架构与实践。本次分享主要围绕以下四个方面:实时计算的痛点、Saber 的平台演进、结合 AI 的案例实践、未来的发展与思考。
Apache Flink 漫谈系列(09) - JOIN 算子
聊什么 在《Apache Flink 漫谈系列 - SQL概览》中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL标准的,那么再深思一下传统数据库为啥需要有JOIN算子呢?在实现原理上面Apache Flink内部实现和传统.
gig:自带负载均衡和降级功能的高可用RPC解决方案
gig基于对latency的负反馈控制,实现了坏节点屏蔽、服务预热、异构集群负载均衡、自动降级等功能,大大提高了阿里搜索线上服务的稳定性。
1688图片搜索API | 上传图片秒找同款 | 相似商品精准推荐
1688图片搜索API是阿里巴巴B2B平台提供的图像识别服务,支持通过上传商品图片在海量商品库中快速查找同款或相似商品。适用于电商比价、批量搜索及系统集成,提升采购效率。建议使用清晰图片并优化分类与分页设置,以提高搜索准确率和性能表现。
小红书笔记评论API:一键获取分层评论与用户互动数据
小红书笔记评论API可获取指定笔记的评论详情,包括内容、点赞数、评论者信息等,支持分页与身份认证,返回JSON格式数据,适用于舆情监控、用户行为分析等场景。
向量存储vs知识图谱:LLM记忆系统技术选型
本文探讨LLM长期记忆系统的构建难点与解决方案,对比向量检索与知识图谱架构优劣,分析Zep、Mem0、Letta等开源框架,并提供成本优化策略,助力开发者实现高效、可扩展的AI记忆系统。
香烟品牌识别和规格识别设计思路
基于YOLOv8实现香烟品牌与规格(条装/单盒装)识别,采用“品牌+规格”组合为60类的复合类别方案,结合充足标注数据(每类300-500张)、数据增强与反例优化,进行端到端联合训练,提升模型在复杂场景下的检测与分类精度。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
VIN码查询_标准版API:帮助解锁车辆的“身份证”详细信息的实战指南
VIN码(车辆识别号码)是由17位字母和数字组成的全球唯一编码,相当于汽车的“身份证”。通过解析VIN码,可获取品牌、车系、生产年份等关键信息。探数API平台的VIN码查询API(标准版),只需输入VIN码即可返回完整车辆配置信息。 该API适用于多种场景:电商平台可自动填充商品详情,提升准确性;维修行业能精准匹配零件与诊断需求;二手车市场则增强交易透明度与安全性。其调用流程简单,包括准备VIN码、构造请求、处理响应及异常处理。 VIN码不仅是查询工具,更是连接制造、销售、维修、保险等环节的纽带。
PINN应用案例:神经网络求解热扩散方程高质量近似解
本文探讨了物理信息神经网络(PINN)在求解一维热扩散方程中的应用,对比分析了多层感知器(MLP)、残差网络(ResNet)和Wang2020架构的性能。PINN通过构建损失函数整合偏微分方程残差、边界条件和初始条件,实现对物理系统的近似求解。实验结果表明,传统架构如MLP和ResNet虽能大致还原解析解,但在部分区域存在显著偏差;而Wang2020架构因专门设计以应对PINN训练挑战,表现更为优越,与解析解高度一致。研究还揭示了PINN训练中“平台期后突变”的优化特性,并提出通过构造满足约束条件的网络架构以简化多目标优化问题,为未来研究提供了新方向。
LIDC-IDRI肺结节数据集分割策略
本文介绍了使用LIDC-IDRI开源数据集进行肺癌检测项目的完整流程,包括数据预处理、训练分割模型和分类模型三个主要步骤。首先,下载包含患者DICOM文件的数据集;其次,克隆预处理代码并配置Pylidc库以生成肺部遮罩图像;最后,通过脚本准备数据集并创建元数据文件。文章还提供了相关GitHub资源链接,帮助读者更好地理解和实现项目。
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
淘宝图片搜索商品列表API接口全攻略
淘宝图片搜索API(拍立淘)通过上传图片快速检索淘宝/天猫相似商品,支持标题、价格、销量等信息返回。核心功能包括以图搜图、商品筛选和分页查询,具备高效性、准确性和多语言支持。开发者需注册账号、创建应用并申请权限后调用接口,适用于电商平台、比价工具等场景。
Windows用户必备:Postman v11详细安装指南与API测试入门教程(附官网下载
Postman是全球领先的API开发与测试工具,支持REST、SOAP、GraphQL等协议调试。2025年最新版v11新增AI智能生成测试用例、多环境变量同步等功能,适用于前后端分离开发、自动化测试、接口文档自动生成及团队协作共享API资源。本文详细介绍Postman的软件定位、核心功能、安装步骤、首次配置、基础使用及常见问题解答,帮助用户快速上手并高效利用该工具进行API开发与测试。
使用PHP接入纯真IP库:实现IP地址地理位置查询
本文介绍了如何使用PHP接入纯真IP库(QQWry),实现IP地址的地理位置查询。纯真IP库是一个轻量级的IP数据库,数据格式简单,查询速度快,适合Web应用。首先,下载并放置`QQWry.dat`文件到项目目录。接着,通过编写PHP类解析该文件,实现IP查询功能。最后,提供了一个完整的案例演示,展示如何查询IP地址对应的国家和地区信息。该工具适用于用户地理位置分析、访问日志分析和风控系统等场景,具有轻量级、查询速度快、数据更新方便等优点。
产品经理-用户体验五要素 - AxureMost
《用户体验五要素》介绍了构建成功用户体验设计的五个层面:战略层、范围层、结构层、框架层和表现层。战略层明确产品目标与用户需求;范围层定义功能和内容需求;结构层规划交互与信息架构;框架层设计界面、导航和信息布局;表现层则通过视觉设计创造感知体验。每一层都依赖于其下一层,形成自下而上的连锁效应,确保各要素相互作用,共同实现用户体验目标。
Transformer 学习笔记 | Seq2Seq,Encoder-Decoder,分词器tokenizer,attention,词嵌入
本文记录了学习Transformer过程中的笔记,介绍了Seq2Seq模型及其编码器-解码器结构。Seq2Seq模型通过将输入序列转化为上下文向量,再由解码器生成输出序列,适用于机器翻译、对话系统等任务。文章详细探讨了Seq2Seq的优势与局限,如信息压缩导致的细节丢失和短期记忆限制,并引入注意力机制来解决长序列处理问题。此外,还介绍了分词器(tokenizer)的工作原理及不同类型分词器的特点,以及词嵌入和Transformer架构的基础知识。文中包含大量图表和实例,帮助理解复杂的概念。参考资料来自多个权威来源,确保内容的准确性和全面性。
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。